文章目录
- [1. 一元向量值函数及其导数](#1. 一元向量值函数及其导数)
- [2. 空间曲线的切线与法平面](#2. 空间曲线的切线与法平面)
- [3. 曲面的切平面与法线](#3. 曲面的切平面与法线)
1. 一元向量值函数及其导数
- 一元向量值函数
设数集 D ⊂ R D \subset \mathbf{R} D⊂R,则称映射 f : D → R n \boldsymbol{f}: D \to \mathbf{R}^n f:D→Rn为一元向量值函数 ,通常记为 r = f ( t ) = f 1 ( t ) e 1 + f 2 ( t ) e 2 + ⋯ + f n ( t ) e n , t ∈ D , \boldsymbol{r} = \boldsymbol{f}(t)=f_1(t)\boldsymbol{e_1}+f_2(t)\boldsymbol{e_2}+\dots+f_n(t)\boldsymbol{e_n}, \quad t \in D, r=f(t)=f1(t)e1+f2(t)e2+⋯+fn(t)en,t∈D,其中数集 D D D称为函数的定义域, t t t称为自变量, r \boldsymbol{r} r称为因变量.
一元向量值函数是普通一元函数的推广,自变量 t t t依然取实数值,但因变量 r \boldsymbol{r} r不取实数值,而取值为 n n n维向量. - 向量值函数的图形
设(变)向量 r \boldsymbol{r} r的起点取在坐标系的原点 O O O处,终点在 M M M处,即 r = O M → \boldsymbol{r} = \overrightarrow{OM} r=OM .
当 t t t改变时, r \boldsymbol{r} r跟着改变,从而终点 M M M也随之改变. 终点 M M M的轨迹(记作曲线 Γ \varGamma Γ)称为向量值函数 r = f ( t ) \boldsymbol{r} = \boldsymbol{f}(t) r=f(t) ( t ∈ D t \in D t∈D)的终端曲线,曲线 Γ \varGamma Γ也称为向量值函数 r = f ( t ) \boldsymbol{r} = \boldsymbol{f}(t) r=f(t) ( t ∈ D t \in D t∈D)的图形 .
由于向量值函数 r = f ( t ) \boldsymbol{r} = \boldsymbol{f}(t) r=f(t) ( t ∈ D t \in D t∈D)与空间曲线 Γ \varGamma Γ是一一对应的,
因此 r = f ( t ) \boldsymbol{r} = \boldsymbol{f}(t) r=f(t) 称为曲线 Γ \varGamma Γ的向量方程(实际上是空间曲线的参数方程). - 向量值函数的极限
设向量值函数 f ( t ) \boldsymbol{f}(t) f(t)在点 t 0 t_0 t0的某一去心邻域内有定义,
如果存在一个常向量 r 0 \boldsymbol{r_0} r0,对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得当 t t t满足 0 < ∣ t − t 0 ∣ < δ 0 < |t - t_0| < \delta 0<∣t−t0∣<δ时,对应的函数值 f ( t ) \boldsymbol{f}(t) f(t)都满足不等式 ∣ f ( t ) − r 0 ∣ < ε , |\boldsymbol{f}(t) - \boldsymbol{r_0}| < \varepsilon, ∣f(t)−r0∣<ε,那么,常向量 r 0 \boldsymbol{r_0} r0就叫做向量值函数 f ( t ) \boldsymbol{f}(t) f(t)当 t → t 0 t \to t_0 t→t0时的极限,记作 lim t → t 0 f ( t ) = r 0 或 f ( t ) → r 0 , t → t 0 . \lim\limits_{t \to t_0} \boldsymbol{f}(t) = \boldsymbol{r_0} \quad \text{或} \quad \boldsymbol{f}(t) \to \boldsymbol{r_0}, \, t \to t_0. t→t0limf(t)=r0或f(t)→r0,t→t0. 向量值函数 f ( t ) \boldsymbol{f}(t) f(t)当 t → t 0 t \to t_0 t→t0时的极限存在的充分必要条件是 f ( t ) \boldsymbol{f}(t) f(t)的三个分量函数 f 1 ( t ) f_1(t) f1(t), f 2 ( t ) f_2(t) f2(t), f 3 ( t ) f_3(t) f3(t)当 t → t 0 t \to t_0 t→t0时的极限都存在
在 f ( t ) \boldsymbol{f}(t) f(t)极限存在时,向量值函数取极限等价于对应分量取极限 向量模等于各分量模之和的平方根 - 向量值函数的连续性
设向量值函数 f ( t ) \boldsymbol{f}(t) f(t)在点 t 0 t_0 t0的某一邻域内有定义,若 lim t → t 0 f ( t ) = f ( t 0 ) , \lim\limits_{t \to t_0} \boldsymbol{f}(t) = \boldsymbol{f}(t_0), t→t0limf(t)=f(t0), 则称向量值函数 f ( t ) \boldsymbol{f}(t) f(t)在 t 0 t_0 t0连续.
向量值函数 f ( t ) \boldsymbol{f}(t) f(t)在 t 0 t_0 t0连续的充分必要条件是 f ( t ) \boldsymbol{f}(t) f(t)的三个分量函数 f 1 ( t ) f_1(t) f1(t), f 2 ( t ) f_2(t) f2(t), f 3 ( t ) f_3(t) f3(t)都在 t 0 t_0 t0连续. - 向量值函数的导数
设向量值函数 r = f ( t ) \boldsymbol{r} = \boldsymbol{f}(t) r=f(t)在点 t 0 t_0 t0的某一邻域内有定义,如果 lim Δ t → 0 Δ r Δ t = lim Δ t → 0 f ( t 0 + Δ t ) − f ( t 0 ) Δ t \lim\limits_{\Delta t \to 0} \dfrac{\Delta \boldsymbol{r}}{\Delta t} = \lim\limits_{\Delta t \to 0} \dfrac{ \boldsymbol{f}(t_0 + \Delta t) - \boldsymbol{f}(t_0) }{ \Delta t } Δt→0limΔtΔr=Δt→0limΔtf(t0+Δt)−f(t0) 存在,
那么就称这个极限向量为向量值函数 r = f ( t ) \boldsymbol{r} = \boldsymbol{f}(t) r=f(t)在 t 0 t_0 t0处的导数 或导向量 ,记作 f ′ ( t 0 ) \boldsymbol{f}'(t_0) f′(t0)或 d r d t ∣ t = t 0 \left. \dfrac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} \right|_{t = t_0} dtdr t=t0.
向量值函数 f ( t ) \boldsymbol{f}(t) f(t)在 t 0 t_0 t0可导(即存在导数)的充分必要条件是 f ( t ) \boldsymbol{f}(t) f(t)的三个分量函数 f 1 ( t ) f_1(t) f1(t), f 2 ( t ) f_2(t) f2(t), f 3 ( t ) f_3(t) f3(t)都在 t 0 t_0 t0可导
当 f ( t ) \boldsymbol{f}(t) f(t)在 t 0 t_0 t0可导时,其导数等价于各分量的取导数 - 向量值函数的求导法则
- d d t C = 0 \dfrac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{C} = \boldsymbol{0} dtdC=0
- d d t [ c u ( t ) ] = c u ′ ( t ) \dfrac{\mathrm{d}}{\mathrm{d}t} \left[ c\boldsymbol{u}(t) \right] = c\boldsymbol{u}'(t) dtd[cu(t)]=cu′(t)
- d d t [ u ( t ) ± v ( t ) ] = u ′ ( t ) ± v ′ ( t ) \dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \boldsymbol{u}(t) \pm \boldsymbol{v}(t) \right] = \boldsymbol{u}'(t) \pm \boldsymbol{v}'(t) dtd[u(t)±v(t)]=u′(t)±v′(t)
- d d t [ φ ( t ) u ( t ) ] = φ ′ ( t ) u ( t ) + φ ( t ) u ′ ( t ) \dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \varphi(t) \boldsymbol{u}(t) \right] = \varphi'(t) \boldsymbol{u}(t) + \varphi(t) \boldsymbol{u}'(t) dtd[φ(t)u(t)]=φ′(t)u(t)+φ(t)u′(t)
- d d t [ u ( t ) ⋅ v ( t ) ] = u ′ ( t ) ⋅ v ( t ) + u ( t ) ⋅ v ′ ( t ) \dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \boldsymbol{u}(t) \cdot \boldsymbol{v}(t) \right] = \boldsymbol{u}'(t) \cdot \boldsymbol{v}(t) + \boldsymbol{u}(t) \cdot \boldsymbol{v}'(t) dtd[u(t)⋅v(t)]=u′(t)⋅v(t)+u(t)⋅v′(t) u ( t ) ⋅ v ( t ) = u 1 v 1 + u 2 v 2 \boldsymbol{u}(t) \cdot \boldsymbol{v}(t)=u_1v_1+u_2v_2 u(t)⋅v(t)=u1v1+u2v2
u ′ ( t ) ⋅ v ( t ) + u ( t ) ⋅ v ′ ( t ) = u 1 ′ v 1 + u 2 ′ v 2 + u 1 v 1 ′ + u 2 v 2 ′ \boldsymbol{u}'(t) \cdot \boldsymbol{v}(t) + \boldsymbol{u}(t) \cdot \boldsymbol{v}'(t)=u_1'v_1+u_2'v_2+u_1v_1'+u_2v_2' u′(t)⋅v(t)+u(t)⋅v′(t)=u1′v1+u2′v2+u1v1′+u2v2′
- d d t [ u ( t ) × v ( t ) ] = u ′ ( t ) × v ( t ) + u ( t ) × v ′ ( t ) \dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \boldsymbol{u}(t) \times \boldsymbol{v}(t) \right] = \boldsymbol{u}'(t) \times \boldsymbol{v}(t) + \boldsymbol{u}(t) \times \boldsymbol{v}'(t) dtd[u(t)×v(t)]=u′(t)×v(t)+u(t)×v′(t)
- d d t u [ φ ( t ) ] = φ ′ ( t ) u ′ [ φ ( t ) ] \dfrac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{u} \left[ \varphi(t) \right] = \varphi'(t) \boldsymbol{u}' \left[ \varphi(t) \right] dtdu[φ(t)]=φ′(t)u′[φ(t)]
- 向量值函数导数的几何意义是对应空间曲线的切向量,指向与曲线增长方向相同
2. 空间曲线的切线与法平面
- 空间曲线的切线与法平面
设空间曲线 Γ \varGamma Γ的参数方程为 { x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) , t ∈ [ α , β ] . \begin{cases} x = \varphi(t), \\ y = \psi(t), \\ z = \omega(t), \end{cases} \quad t \in [\alpha, \beta]. ⎩ ⎨ ⎧x=φ(t),y=ψ(t),z=ω(t),t∈[α,β].这里假定三个函数都在 [ α , β ] [\alpha, \beta] [α,β]上可导,且三个导数不同时为零
已知点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0),设与点 M M M对应的参数为 t 0 t_0 t0,曲线 Γ \varGamma Γ在该点的切向量为 f ′ ( t 0 ) = ( φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) ) \boldsymbol{f}'(t_0)=(\varphi'(t_0),\psi'(t_0), \omega'(t_0)) f′(t0)=(φ′(t0),ψ′(t0),ω′(t0)),从而曲线 Γ \varGamma Γ在点 M M M处的切线方程 为 x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) . \dfrac{x - x_0}{\varphi'(t_0)} = \dfrac{y - y_0}{\psi'(t_0)} = \dfrac{z - z_0}{\omega'(t_0)}. φ′(t0)x−x0=ψ′(t0)y−y0=ω′(t0)z−z0.通过点 M M M且与切线垂直的平面称为曲线 Γ \varGamma Γ在点 M M M处的法平面 ,它是通过点 M ( x 0 , y 0 , z 0 ) M(x_0, y_0, z_0) M(x0,y0,z0)且以 T = f ′ ( t 0 ) \boldsymbol{T} = \boldsymbol{f}'(t_0) T=f′(t0)为法向量的平面,因此法平面方程为
φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0. \varphi'(t_0)(x - x_0) + \psi'(t_0)(y - y_0) + \omega'(t_0)(z - z_0) = 0. φ′(t0)(x−x0)+ψ′(t0)(y−y0)+ω′(t0)(z−z0)=0. - 空间曲线的参数方程(以 x x x为参数)
{ y = φ ( x ) z = ψ ( x ) ⇔ { x = x y = φ ( x ) z = ψ ( x ) \begin{cases} y = \varphi(x) \\ z = \psi(x) \end{cases}\Lrarr\begin{cases} x=x\\ y = \varphi(x) \\ z = \psi(x) \end{cases} {y=φ(x)z=ψ(x)⇔⎩ ⎨ ⎧x=xy=φ(x)z=ψ(x) - 空间曲线的一般方程
{ F ( x , y , z ) = 0 , G ( x , y , z ) = 0 \begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0 \end{cases} {F(x,y,z)=0,G(x,y,z)=0设 M ( x 0 , y 0 , z 0 ) M(x_0, y_0, z_0) M(x0,y0,z0)是曲线 Γ \varGamma Γ上的一个点,
又设 F F F、 G G G有对各个变量的连续偏导数,且 ∂ ( F , G ) ∂ ( y , z ) ∣ ( x 0 , y 0 , z 0 ) ≠ 0 \left. \dfrac{\partial (F, G)}{\partial (y, z)} \right|_{(x_0, y_0, z_0)} \neq 0 ∂(y,z)∂(F,G) (x0,y0,z0)=0
则方程组在点 M ( x 0 , y 0 , z 0 ) M(x_0, y_0, z_0) M(x0,y0,z0)的某一邻域内确定了一组函数 y = φ ( x ) y = \varphi(x) y=φ(x), z = ψ ( x ) z = \psi(x) z=ψ(x)
要求曲线 Γ \varGamma Γ在点 M M M处的切线方程和法平面方程,只要求出 φ ′ ( x 0 ) \varphi'(x_0) φ′(x0), ψ ′ ( x 0 ) \psi'(x_0) ψ′(x0),再代入切线方程和法平面方程即可
方程组两边对 x x x求全导数可得
{ F x ′ + F y ′ d y d x + F z ′ d z d x = 0 , G x ′ + G y ′ d y d x + G z ′ d z d x = 0. \begin{cases} F'_x + F'_y \dfrac{\mathrm{d}y}{\mathrm{d}x} + F'_z \dfrac{\mathrm{d}z}{\mathrm{d}x} = 0, \\ G'_x + G'_y\dfrac{\mathrm{d}y}{\mathrm{d}x} + G'_z \dfrac{\mathrm{d}z}{\mathrm{d}x} = 0. \end{cases} ⎩ ⎨ ⎧Fx′+Fy′dxdy+Fz′dxdz=0,Gx′+Gy′dxdy+Gz′dxdz=0.
φ ′ ( x ) = ∂ ( F , G ) ∂ ( z , x ) ∂ ( F , G ) ∂ ( y , z ) , ψ ′ ( x ) = ∂ ( F , G ) ∂ ( x , y ) ∂ ( F , G ) ∂ ( y , z ) \varphi'(x)=\dfrac{\dfrac{\partial(F,G)}{\partial(z,x)}}{\dfrac{\partial(F,G)}{\partial(y,z)}},\psi'(x)=\dfrac{\dfrac{\partial(F,G)}{\partial(x,y)}}{\dfrac{\partial(F,G)}{\partial(y,z)}} φ′(x)=∂(y,z)∂(F,G)∂(z,x)∂(F,G),ψ′(x)=∂(y,z)∂(F,G)∂(x,y)∂(F,G)
3. 曲面的切平面与法线
- 曲面的切平面与法线
曲面方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0,设 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)是曲面上一点,并设函数 F ( x , y , z ) F(x,y,z) F(x,y,z)的偏导数在该点连续且不同时为零
通过点 M M M在曲面上任意引一条曲线,假定曲线的方程为 { x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) , t ∈ [ α , β ] . \begin{cases} x = \varphi(t), \\ y = \psi(t), \\ z = \omega(t), \end{cases} \quad t \in [\alpha, \beta]. ⎩ ⎨ ⎧x=φ(t),y=ψ(t),z=ω(t),t∈[α,β]. t = t 0 t = t_0 t=t0对应于点 M ( x 0 , y 0 , z 0 ) M(x_0, y_0, z_0) M(x0,y0,z0)且 φ ′ ( t 0 ) \varphi'(t_0) φ′(t0), ψ ′ ( t 0 ) \psi'(t_0) ψ′(t0), ω ′ ( t 0 ) \omega'(t_0) ω′(t0)不全为零(切线存在)
F ( φ ( t ) , ψ ( t ) , ω ( t ) ) ≡ 0 F(\varphi(t),\psi(t),\omega(t))\equiv 0 F(φ(t),ψ(t),ω(t))≡0
因为 F ( x , y , z ) F(x, y, z) F(x,y,z)在点 ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0)处有连续偏导数,且 φ ′ ( t 0 ) \varphi'(t_0) φ′(t0)、 ψ ′ ( t 0 ) \psi'(t_0) ψ′(t0)和 ω ′ ( t 0 ) \omega'(t_0) ω′(t0)存在,所以这恒等式左边的复合函数在 t = t 0 t = t_0 t=t0时有全导数,且这全导数等于零,即
F x ′ ( x 0 , y 0 , z 0 ) φ ′ ( t 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ψ ′ ( t 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ω ′ ( t 0 ) = 0 F'_x(x_0,y_0,z_0)\varphi'(t_0)+F'_y(x_0,y_0,z_0)\psi'(t_0)+F'_z(x_0,y_0,z_0)\omega'(t_0)=0 Fx′(x0,y0,z0)φ′(t0)+Fy′(x0,y0,z0)ψ′(t0)+Fz′(x0,y0,z0)ω′(t0)=0
引入向量 n = ( F x ′ ( x 0 , y 0 , z 0 ) , F y ′ ( x 0 , y 0 , z 0 ) , F z ′ ( x 0 , y 0 , z 0 ) ) \boldsymbol{n}=(F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0)) n=(Fx′(x0,y0,z0),Fy′(x0,y0,z0),Fz′(x0,y0,z0))
任意经过 M M M的曲线在 M M M处的切线向量都与 n \boldsymbol{n} n垂直
所以曲面上通过点 M M M的一切曲线在点 M M M的切线都在同一个平面上
这个平面称为曲面在点 M M M的切平面 ,这切平面的方程是 F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0 Fx′(x0,y0,z0)(x−x0)+Fy′(x0,y0,z0)(y−y0)+Fz′(x0,y0,z0)(z−z0)=0通过点 M ( x 0 , y 0 , z 0 ) M(x_0, y_0, z_0) M(x0,y0,z0)且垂直于切平面的直线称为曲面在该点的法线 ,法线方程是 x − x 0 F x ( x 0 , y 0 , z 0 ) = y − y 0 F y ( x 0 , y 0 , z 0 ) = z − z 0 F z ( x 0 , y 0 , z 0 ) \dfrac{x - x_0}{F_x(x_0, y_0, z_0)} = \dfrac{y - y_0}{F_y(x_0, y_0, z_0)} = \dfrac{z - z_0}{F_z(x_0, y_0, z_0)} Fx(x0,y0,z0)x−x0=Fy(x0,y0,z0)y−y0=Fz(x0,y0,z0)z−z0 垂直于曲面上切平面的向量称为曲面的法向量 ,向量 n = ( F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) ) \boldsymbol{n} = \big(F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0)\big) n=(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))就是曲面在点 M M M处的一个法向量. - z = f ( x , y ) z=f(x,y) z=f(x,y)
函数 z = f ( x , y ) z = f(x, y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)的全微分,在几何上表示曲面 z = f ( x , y ) z = f(x, y) z=f(x,y)在点 ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0)处的切平面上点的竖坐标的增量 切平面的方程: f x ′ ( x 0 , y 0 ) ( x − x 0 ) + f y ′ ( x 0 , y 0 ) ( y − y 0 ) − ( z − z 0 ) = 0 f'_x(x_0,y_0)(x-x_0)+f'_y(x_0,y_0)(y-y_0)-(z-z_0)=0 fx′(x0,y0)(x−x0)+fy′(x0,y0)(y−y0)−(z−z0)=0
下一节 :
总目录 :【高等数学】 目录