【pytorch】reshape的使用

torch.reshape 是 PyTorch 中用于改变张量形状的函数。它的作用是重新安排张量的维度,使其符合指定的形状,但不会改变数据的顺序。

Returns a tensor with the same data and number of elements as input, but with the specified shape.

基本语法

python 复制代码
input_reshape = torch.reshape(input, shape)

或者:

python 复制代码
input_reshape = input.reshape(shape)
  • input(tensor):输入张量。
  • shape(tuple of int):目标形状,可以是一个整数或一个整数元组,表示张量的新维度。

例子

python 复制代码
import torch

# 创建一个形状为 (4, 3) 的张量
x = torch.arange(12).reshape(4, 3)
print(x)

输出:

复制代码
tensor([[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]])

你可以将这个张量重新调整成其他形状,比如将它变成一个 (2, 6) 的张量:

python 复制代码
y = x.reshape(2, 6)
print(y)

输出:

复制代码
tensor([[ 0,  1,  2,  3,  4,  5],
        [ 6,  7,  8,  9, 10, 11]])

特别的用法

使用 1 自动推算维度

如果你不确定某个维度应该是多少,可以使用 -1 来自动推算。例如,如果你只知道张量的总元素数和某些维度,可以让 PyTorch 自动计算某个维度。

A single dimension may be -1, in which case it's inferred from the remaining dimensions and the number of elements in input.

python 复制代码
z = x.reshape(2, -1)  # PyTorch 会自动推算第二维度的大小
print(z)

输出:

复制代码
tensor([[ 0,  1,  2,  3,  4,  5],
        [ 6,  7,  8,  9, 10, 11]])

torch.reshape(x, (-1,)) 将张量 展平成一维 (即向量)等效于 x.flatten()

  • 此时 PyTorch 会自动计算该维度的大小,计算公式为:

    新维度大小 = 原始张量的总元素数

  • 因为要展成向量,所以只有一个维度(表示有多少个数),所以只需要一个-1,后面空着就行

    • 所以其实也可以写成 (-1),即torch.reshape(x, (-1))推荐保留逗号

注意:这跟 (1,-1)有区别 ,(-1,)是展平成一维向量,

而(1,-1)是1*n,这被视作二维的(一个维度是1个数,另一个维度是n个数)

例子:

python 复制代码
x = torch.tensor([[0, 1],
                  [2, 3]])

x_vec = x.reshape(-1,)
print(x_vec)

x_matrix = x.reshape(1,-1)
print(x_matrix)

输出:

python 复制代码
tensor([0, 1, 2, 3])
tensor([[0, 1, 2, 3]])
  • 总元素数2 × 2 = 4

  • 执行 torch.reshape(x, (-1,)) 后:

    → 新形状为 (4,)

    → 结果:tensor([0, 1, 2, 3])

  • 执行 torch.reshape(x, (1,-1)) 后:

    → 新形状为 (1,4)

    → 结果:tensor([[0, 1, 2, 3]])

注意事项

保持元素数量一致

使用 reshape 时,新形状的元素数量必须和原形状一致。例如,原来是 (4, 3),总共有 12 个元素,不能reshape成 (3, 5) 因为会丢失元素。

python 复制代码
# 错误的 reshape
# x.reshape(3, 5)  # 会抛出错误,无法reshape

总之,要接收返回的tensor

  • reshape 不会修改原始张量,它会返回一个新的张量,除非原张量已经在内存中是以连续的方式存储。

When possible, the returned tensor will be a view of input. Otherwise, it will be a copy. Contiguous inputs and inputs with compatible strides can be reshaped without copying, but you should not depend on the copying vs. viewing behavior.

  • 如果原张量的内存布局不连续,reshape 会返回一个新的内存副本。
  • torch.viewtorch.reshape 在功能上相似,但 torch.view 要求张量是连续的,而 torch.reshape 会自动处理不连续的张量。
相关推荐
小宁爱Python6 分钟前
Django 从环境搭建到第一个项目
后端·python·django
带娃的IT创业者27 分钟前
如何开发一个教育性质的多线程密码猜测演示器
网络·python·算法
luckys.one6 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
大翻哥哥8 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
zhousenshan9 小时前
Python爬虫常用框架
开发语言·爬虫·python
IMER SIMPLE9 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
CodeCraft Studio9 小时前
国产化Word处理组件Spire.DOC教程:使用 Python 将 Markdown 转换为 HTML 的详细教程
python·html·word·markdown·国产化·spire.doc·文档格式转换
专注API从业者10 小时前
Python/Java 代码示例:手把手教程调用 1688 API 获取商品详情实时数据
java·linux·数据库·python
java1234_小锋10 小时前
[免费]基于Python的协同过滤电影推荐系统(Django+Vue+sqlite+爬虫)【论文+源码+SQL脚本】
python·django·电影推荐系统·协同过滤
看海天一色听风起雨落11 小时前
Python学习之装饰器
开发语言·python·学习