图论Day6学习心得

kruskal算法

53. 寻宝(第七期模拟笔试)

prim 算法是维护节点的集合,而 Kruskal 是维护边的集合

kruscal的思路:

  • 边的权值排序,因为要优先选最小的边加入到生成树里
  • 遍历排序后的边
    • 如果边首尾的两个节点在同一个集合,说明如果连上这条边图中会出现环
    • 如果边首尾的两个节点不在同一个集合,加入到最小生成树,并把两个节点加入同一个集合

这个算法其实是从离散数学的图论那一章衍生出来的,具体的过程可以在B站找一个动态视频看一看,文字演示比较难描述。

代码实现中,还有一个需要注意的点:如果将两个节点加入同一个集合,又如何判断两个节点是否在同一个集合呢

这里就涉及到之前的并查集。

并查集主要就两个功能:

  • 将两个元素添加到一个集合中
  • 判断两个元素在不在同一个集合

本题代码如下,已经详细注释:

cpp 复制代码
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

// l,r为 边两边的节点,val为边的数值
struct Edge {
    int l, r, val;
};

// 节点数量
int n = 10001;
// 并查集标记节点关系的数组
vector<int> father(n, -1); // 节点编号是从1开始的,n要大一些

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}

// 并查集的查找操作
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}

// 并查集的加入集合
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}

int main() {

    int v, e;
    int v1, v2, val;
    vector<Edge> edges;
    int result_val = 0;
    cin >> v >> e;
    while (e--) {
        cin >> v1 >> v2 >> val;
        edges.push_back({v1, v2, val});
    }

    // 执行Kruskal算法
    // 按边的权值对边进行从小到大排序
    sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) {
            return a.val < b.val;
    });

    // 并查集初始化
    init();

    // 从头开始遍历边
    for (Edge edge : edges) {
        // 并查集,搜出两个节点的祖先
        int x = find(edge.l);
        int y = find(edge.r);

        // 如果祖先不同,则不在同一个集合
        if (x != y) {
            result_val += edge.val; // 这条边可以作为生成树的边
            join(x, y); // 两个节点加入到同一个集合
        }
    }
    cout << result_val << endl;
    return 0;
}

大家可以根据代码按照顺序走一遍,可以对算法有一个更清晰的理解。

然后看下一个算法:拓扑排序

117. 软件构建

本题是拓扑排序的经典题目。

一聊到拓扑排序,可能会想这是排序,不会想到这是图论算法。

其实拓扑排序是经典的图论问题。

拓扑排序的应用场景:

大学排课,例如 先上A课,才能上B课,上了B课才能上C课,上了A课才能上D课,等等一系列这样的依赖顺序。 问给规划出一条完整的上课顺序。

拓扑排序在文件处理上也有应用,在做项目安装文件包的时候,经常发现复杂的文件依赖关系, A依赖B,B依赖C,B依赖D,C依赖E 等等。

如果给出一条线性的依赖顺序来下载这些文件呢?

当上面的依赖关系是一百对,一千对甚至上万个依赖关系,这些依赖关系中可能还有循环依赖,你如何发现循环依赖呢,又如果排出线性顺序呢?

所以拓扑排序就是专门解决这类问题的。

概括来说,给出一个 有向图,把这个有向图转成线性的排序就叫拓扑排序

当然拓扑排序也要检测这个有向图是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。

所以拓扑排序也是图论中判断有向无环图的常用方法

拓扑排序指的是一种 解决问题的大体思路, 而具体算法,可能是广搜也可能是深搜。

其实只要能在把 有向无环图 进行线性排序 的算法 都可以叫做 拓扑排序。

实现拓扑排序的算法有两种:卡恩算法(BFS)和DFS

卡恩1962年提出这种解决拓扑排序的思路

一般来说只需要掌握 BFS (广度优先搜索)就可以了,清晰易懂,如果还想多了解一些,可以再去学一下 DFS 的思路,但 DFS 不是本篇重点。

接下来我们来讲解BFS的实现思路。

以题目中示例为例如图:

做拓扑排序的话,如果肉眼去找开头的节点,一定能找到 节点0 吧,都知道要从节点0 开始。

但为什么能找到 节点0呢,因为我们肉眼看着 这个图就是从 节点0出发的。

作为出发节点,它有什么特征?

节点0 的入度 为0 出度为2, 也就是 没有边指向它,而它有两条边是指出去的。

节点的入度表示 有多少条边指向它,节点的出度表示有多少条边 从该节点出发。

所以当做拓扑排序的时候,应该优先找入度为 0 的节点,只有入度为0,它才是出发节点。 理解以上内容很重要

接下来给出 拓扑排序的过程,两步:

  1. 找到入度为0 的节点,加入结果集
  2. 将该节点从图中移除

循环以上两步,直到 所有节点都在图中被移除了。

结果集的顺序,就是想要的拓扑排序顺序 (结果集里顺序可能不唯一)

为了每次可以找到所有节点的入度信息,要在初始化的时候,就把每个节点的入度 和 每个节点的依赖关系做统计。

代码如下:

cpp 复制代码
cin >> n >> m;
vector<int> inDegree(n, 0); // 记录每个文件的入度
vector<int> result; // 记录结果
unordered_map<int, vector<int>> umap; // 记录文件依赖关系

while (m--) {
    // s->t,先有s才能有t
    cin >> s >> t;
    inDegree[t]++; // t的入度加一
    umap[s].push_back(t); // 记录s指向哪些文件
}

找入度为0 的节点,需要用一个队列放存放。

因为每次寻找入度为0的节点,不一定只有一个节点,可能很多节点入度都为0,所以要将这些入度为0的节点放到队列里,依次去处理。

代码如下:

cpp 复制代码
queue<int> que;
for (int i = 0; i < n; i++) {
    // 入度为0的节点,可以作为开头,先加入队列
    if (inDegree[i] == 0) que.push(i);
}

开始从队列里遍历入度为0 的节点,将其放入结果集。

cpp 复制代码
while (que.size()) {
    int  cur = que.front(); // 当前选中的节点
    que.pop();
    result.push_back(cur);
    // 将该节点从图中移除 

}

这里面还有一个很重要的过程,如何把这个入度为0的节点从图中移除呢?

为什么要把节点从图中移除?

为的是将 该节点作为出发点所连接的边删掉。

删掉的目的是什么呢?

要把该节点作为出发点所连接的节点的 入度 减一。

如果这里不理解,看上面的模拟过程第一步:

这事节点1 和 节点2 的入度为 1。

将节点0删除后,图为这样:

那么 节点0 作为出发点 所连接的节点的入度 就都做了 减一 的操作。

此时 节点1 和 节点 2 的入度都为0, 这样才能作为下一轮选取的节点。

所以,在代码实现的过程中,本质是要将 该节点作为出发点所连接的节点的 入度 减一 就可以了,这样好能根据入度找下一个节点,不用真在图里把这个节点删掉。

该过程代码如下:

cpp 复制代码
while (que.size()) {
    int  cur = que.front(); // 当前选中的节点
    que.pop();
    result.push_back(cur);
    // 将该节点从图中移除 
    vector<int> files = umap[cur]; //获取cur指向的节点
    if (files.size()) { // 如果cur有指向的节点
        for (int i = 0; i < files.size(); i++) { // 遍历cur指向的节点
            inDegree[files[i]] --; // cur指向的节点入度都做减一操作
            // 如果指向的节点减一之后,入度为0,说明是我们要选取的下一个节点,放入队列。
            if(inDegree[files[i]] == 0) que.push(files[i]); 
        }
    }

}

最后代码如下:

cpp 复制代码
#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;
int main() {
    int m, n, s, t;
    cin >> n >> m;
    vector<int> inDegree(n, 0); // 记录每个文件的入度

    unordered_map<int, vector<int>> umap;// 记录文件依赖关系
    vector<int> result; // 记录结果

    while (m--) {
        // s->t,先有s才能有t
        cin >> s >> t;
        inDegree[t]++; // t的入度加一
        umap[s].push_back(t); // 记录s指向哪些文件
    }
    queue<int> que;
    for (int i = 0; i < n; i++) {
        // 入度为0的文件,可以作为开头,先加入队列
        if (inDegree[i] == 0) que.push(i);
        //cout << inDegree[i] << endl;
    }
    // int count = 0;
    while (que.size()) {
        int  cur = que.front(); // 当前选中的文件
        que.pop();
        //count++;
        result.push_back(cur);
        vector<int> files = umap[cur]; //获取该文件指向的文件
        if (files.size()) { // cur有后续文件
            for (int i = 0; i < files.size(); i++) {
                inDegree[files[i]] --; // cur的指向的文件入度-1
                if(inDegree[files[i]] == 0) que.push(files[i]);
            }
        }
    }
    if (result.size() == n) {
        for (int i = 0; i < n - 1; i++) cout << result[i] << " ";
        cout << result[n - 1];
    } else cout << -1 << endl;


}