电场通过调控三核双乳液液滴顺序聚结以实现两步微反应的新策略

通过电场诱导的顺序聚结过程,将传统一锅法反应拆解为分步进行的微反应------利用多层乳化技术实现单液滴内封装的三个独立反应腔室,突破传统单/双核乳液的反应局限性,实现应用场景拓展性突破。

复制链接,查看原文
https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201702188

文章信息

本研究利用微毛细管玻璃装置,制备了内部封装三种分隔试剂的单分散水-油- 水液滴。随后通过聚二甲基硅氧烷芯片施加交流电场,触发试剂的顺序混合,其中精确的顺序由内核的体积或电导率差异来保证。每个液滴中的两步反应通过两次核聚结来确保,根据条件不同,整个过程耗时 20-40 秒。研究确定了用于内核液滴顺序融合的交流信号最佳参数。此外,通过在双重乳液液滴中进行用于葡萄糖检测的酶催化反应,证明了该技术的能力。这项技术应有助于广泛需要微米级多步反应的应用。

研究背景

多核液滴是有望容纳微反应的结构,微流控乳化技术的进步使得能够生成精美的多核液滴。液滴微流控技术涉及悬浮在连续油相中的单分散水相液滴(油包水乳液),为单细胞分析、药物发现和功能材料合成等各种应用开辟了新的可能性。目前研究证明,在电场作用下,两个相邻液滴经过界面变形、液滴靠近和液膜变薄过程后可以合并,并且该方案已用于引发酶促反应、提取所需成分和封装细胞。尽管有这些有前景的应用,但液滴电聚结仍存在一些限制。例如,由于液滴融合方法需要完美的液滴同步和精确的电极对齐,因此难以实现一组包含不同内容物的液滴的顺序融合。此外,单相水相液滴容易受到连续相中杂质交换或壁面润湿引起的污染。所以,本文报道了一种微流控方法,通过电融合双乳液液滴内的三个核来进行两步微反应。使用微毛细管玻璃装置,制备内部封装有三种分隔试剂的单分散水包油包水型液滴。

研究成果

作者展示了一种新的微流控技术,该技术能够将化学试剂封装在双乳液液滴中,并通过电控顺序聚结在微米尺度上进行两步反应。由于内部液滴在电响应方面存在差异,内部液滴的聚结顺序可以通过液滴的体积或分隔溶液的电导率来控制。与传统的水包油液滴系统不同,这种方法可以用来将一组含有不同成分的液滴封装在一个较大的液滴中,然后以可控的顺序混合试剂。此外,在双乳液液滴中进行的微反应受到油壳的保护,油壳将试剂与外部环境隔开,避免了可能的交叉污染。与此同时,液滴的聚结可以通过调整所施加的交流电压参数轻松控制。该方法可以进行改进,以封装更多的液滴来进行串联微反应。

研究内容

A glass microcapillary device is used to prepare the triple-core W/O/W emulsion droplets. The device consists of two tapered cylindrical capillaries that are inserted into the opposite ends of a square capillary; meanwhile, the left injection cylindrical capillary is inserted with three thin cylindrical capillaries, as illustrated in Figure 1a and Figure S1 (Supporting Information). We use three thin capillaries to inject the inner aqueous phase consisting of salt solution supplemented with 0.5 wt% poly (vinyl alcohol) (PVA), a surfactant used to prevent spontaneous coalescence of the core droplets. The middle oil phase, a mixture of 30 wt% polydimethylsiloxane (PDMS) and 70 wt% silicon oil, is injected from the left cylindrical capillary. The outer phase, 5 wt% PVA aqueous solution, is injected from the left through the interstices between the left cylindrical and the square capillaries. The geometry of the emulsion drops can be tuned by adjusting the flow rate of each phase,[29,30] The outer diameter of the double-emulsion drops is ≈500 µm whereas the sizes of the inner droplets vary. After generation, the emulsion drops are collected in deionized (DI) water (added with 0.5% PVA), and are then reinjected by a syringe into a PDMS microfluidic chip. The chip is fabricated by bonding a PDMS slab with a glass substrate, as shown in Figure 1b and Figure S2 (Supporting Information). The PDMS slab is fabricated with a microchannel that is 1 mm both in width and height, while the substrate is patterned with a planar indium tin oxide (ITO) electrode pair with a gap of 2 mm, perpendicular to the microchannel. When the droplets reside between the electrode pair, the inner droplets fuse with one another sequentially after applying an electric field through the electrodes. The coalescing sequence can be tuned by either of two parameters: the volume and conductivity of the inner droplets.

本文聚焦于微反应体系的时序控制,提出利用电场诱导三核双乳液液滴实现两步微反应的新方法。通过构建包含三个独立反应腔室的双乳液液滴,借助电场对界面电荷的调控,精准触发液滴内核的顺序聚结:首先诱导首个核内反应物混合完成初级反应,再通过调整电场参数触发第二个核的聚结以进行次级反应。该技术突破了传统微反应中多步反应时序不可控及交叉污染的难题,为复杂化学反应分阶段合成、生物药物时序递送等领域提供了可编程的微反应平台。