Langflow Memory 技术深度分析
1. Memory 技术概述和设计理念
1.1 技术概述
Langflow 的 Memory 系统是一个多层次的记忆管理框架,专门设计用于处理对话历史、上下文状态和会话数据的存储与检索。该系统采用了分层架构设计,支持多种记忆类型和存储后端,为 AI 应用提供了强大的记忆能力。
1.2 设计理念
- 分层抽象:通过基类和接口定义统一的记忆操作规范
- 多后端支持:支持数据库存储、外部记忆服务和第三方记忆系统
- 异步优先:全面采用异步编程模型,提升并发性能
- 类型安全:使用 Pydantic 模型确保数据类型安全和验证
- 会话隔离:基于 session_id 实现多会话数据隔离
- 灵活扩展:支持自定义记忆组件和存储策略
2. 核心架构和记忆存储模型
2.1 架构层次图
┌─────────────────────────────────────────────────────────────┐
│ 应用层 (Components) │
├─────────────────────────────────────────────────────────────┤
│ MemoryComponent │ Mem0MemoryComponent │ MessageStore │
├─────────────────────────────────────────────────────────────┤
│ 抽象层 (Base Classes) │
├─────────────────────────────────────────────────────────────┤
│ BaseMemoryComponent │ LCChatMemoryComponent │
├─────────────────────────────────────────────────────────────┤
│ 核心层 (Core Memory) │
├─────────────────────────────────────────────────────────────┤
│ Memory Functions │ LCBuiltinChatMemory │
├─────────────────────────────────────────────────────────────┤
│ 数据层 (Data Models) │
├─────────────────────────────────────────────────────────────┤
│ Message │ MessageTable │ MessageRead │ MessageCreate │
├─────────────────────────────────────────────────────────────┤
│ 存储层 (Storage) │
└─────────────────────────────────────────────────────────────┘
│ Database │ External Memory │ Third-party Services │
└─────────────────────────────────────────────────────────────┘
2.2 存储模型设计
消息基础模型
python
class MessageBase(SQLModel):
timestamp: Annotated[datetime, str_to_timestamp_validator] = Field(
default_factory=lambda: datetime.now(timezone.utc)
)
sender: str # 发送者类型 (Machine/User)
sender_name: str # 发送者名称
session_id: str # 会话标识符
text: str = Field(sa_column=Column(Text)) # 消息内容
files: list[str] = Field(default_factory=list) # 附件文件
error: bool = Field(default=False) # 错误标记
edit: bool = Field(default=False) # 编辑标记
properties: Properties = Field(default_factory=Properties) # 扩展属性
category: str = Field(default="message") # 消息分类
content_blocks: list[ContentBlock] = Field(default_factory=list) # 内容块
数据库存储模型
python
class MessageTable(MessageBase, table=True):
id: UUID = Field(default_factory=uuid4, primary_key=True)
job_id: UUID | None = Field(default=None)
tenant_id: UUID | None = Field(default=None)
organization_id: UUID | None = Field(default=None)
business_domain_id: UUID | None = Field(default=None)
flow_id: UUID | None = Field(default=None)
# JSON 字段存储复杂数据
files: list[str] = Field(sa_column=Column(JSON))
properties: dict | Properties = Field(
default_factory=lambda: Properties().model_dump(),
sa_column=Column(JSON)
)
content_blocks: list[dict | ContentBlock] = Field(
default_factory=list,
sa_column=Column(JSON)
)
3. 记忆基类和抽象接口分析
3.1 BaseMemoryComponent 基类
python
class BaseMemoryComponent(CustomComponent):
display_name = "Chat Memory"
description = "Retrieves stored chat messages given a specific Session ID."
beta: bool = True
icon = "history"
def build_config(self):
return {
"sender": {
"options": [MESSAGE_SENDER_AI, MESSAGE_SENDER_USER, "Machine and User"],
"display_name": "Sender Type",
},
"sender_name": {"display_name": "Sender Name", "advanced": True},
"n_messages": {
"display_name": "Number of Messages",
"info": "Number of messages to retrieve.",
},
"session_id": {
"display_name": "Session ID",
"info": "Session ID of the chat history.",
"input_types": ["Message"],
},
"order": {
"options": ["Ascending", "Descending"],
"display_name": "Order",
"info": "Order of the messages.",
"advanced": True,
},
"data_template": {
"display_name": "Data Template",
"multiline": True,
"info": "Template to convert Data to Text.",
"advanced": True,
},
}
def get_messages(self, **kwargs) -> list[Data]:
raise NotImplementedError
def add_message(
self, sender: str, sender_name: str, text: str,
session_id: str, metadata: dict | None = None, **kwargs
) -> None:
raise NotImplementedError
3.2 LangChain 集成抽象类
python
class LCChatMemoryComponent(Component):
trace_type = "chat_memory"
outputs = [
Output(
display_name="Memory",
name="memory",
method="build_message_history",
)
]
def build_base_memory(self) -> BaseChatMemory:
"""构建基础记忆对象"""
return ConversationBufferMemory(chat_memory=self.build_message_history())
@abstractmethod
def build_message_history(self) -> Memory:
"""构建聊天消息历史记忆"""
pass
4. 记忆存储和持久化机制
4.1 异步存储函数
python
async def aadd_messages(messages: Message | list[Message], flow_id: str | UUID | None = None):
"""异步添加消息到记忆系统"""
if not isinstance(messages, list):
messages = [messages]
if not all(isinstance(message, Message) for message in messages):
types = ", ".join([str(type(message)) for message in messages])
msg = f"The messages must be instances of Message. Found: {types}"
raise ValueError(msg)
try:
messages_models = [MessageTable.from_message(msg, flow_id=flow_id) for msg in messages]
async with session_scope() as session:
messages_models = await aadd_messagetables(messages_models, session)
return [await Message.create(**message.model_dump()) for message in messages_models]
except Exception as e:
logger.exception(e)
raise
4.2 消息存储核心逻辑
python
async def aadd_messagetables(messages: list[MessageTable], session: AsyncSession):
try:
try:
for message in messages:
session.add(message)
await session.commit()
except asyncio.CancelledError:
await session.rollback()
return await aadd_messagetables(messages, session)
for message in messages:
await session.refresh(message)
except asyncio.CancelledError as e:
logger.exception(e)
error_msg = "Operation cancelled"
raise ValueError(error_msg) from e
except Exception as e:
logger.exception(e)
raise
# 处理 JSON 字段反序列化
new_messages = []
for msg in messages:
msg.properties = json.loads(msg.properties) if isinstance(msg.properties, str) else msg.properties
msg.content_blocks = [json.loads(j) if isinstance(j, str) else j for j in msg.content_blocks]
msg.category = msg.category or ""
new_messages.append(msg)
return [MessageRead.model_validate(message, from_attributes=True) for message in new_messages]
4.3 数据一致性保障
- 事务管理:使用数据库事务确保操作原子性
- 异常处理:完善的异常捕获和回滚机制
- 并发控制:通过 asyncio.CancelledError 处理并发取消
- 数据验证:Pydantic 模型确保数据类型安全
5. 记忆检索和查询系统
5.1 查询构建器
python
def _get_variable_query(
sender: str | None = None,
sender_name: str | None = None,
session_id: str | UUID | None = None,
order_by: str | None = "timestamp",
order: str | None = "DESC",
flow_id: UUID | None = None,
limit: int | None = None,
):
stmt = select(MessageTable).where(MessageTable.error == False)
if sender:
stmt = stmt.where(MessageTable.sender == sender)
if sender_name:
stmt = stmt.where(MessageTable.sender_name == sender_name)
if session_id:
stmt = stmt.where(MessageTable.session_id == session_id)
if flow_id:
stmt = stmt.where(MessageTable.flow_id == flow_id)
if order_by:
col = getattr(MessageTable, order_by).desc() if order == "DESC" else getattr(MessageTable, order_by).asc()
stmt = stmt.order_by(col)
if limit:
stmt = stmt.limit(limit)
return stmt
5.2 异步检索实现
python
async def aget_messages(
sender: str | None = None,
sender_name: str | None = None,
session_id: str | UUID | None = None,
order_by: str | None = "timestamp",
order: str | None = "DESC",
flow_id: UUID | None = None,
limit: int | None = None,
) -> list[Message]:
"""异步检索消息"""
async with session_scope() as session:
stmt = _get_variable_query(sender, sender_name, session_id, order_by, order, flow_id, limit)
messages = await session.exec(stmt)
return [await Message.create(**d.model_dump()) for d in messages]
5.3 查询优化策略
- 索引优化:在 session_id、timestamp、sender 等字段建立索引
- 分页查询:通过 limit 参数控制查询结果数量
- 条件过滤:支持多维度条件组合查询
- 排序控制:支持升序和降序排列
6. 上下文管理和会话状态
6.1 会话隔离机制
python
class Message(Data):
session_id: str | UUID | None = Field(default="")
sender: str | None = None
sender_name: str | None = None
timestamp: Annotated[str, timestamp_to_str_validator] = Field(
default_factory=lambda: datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S %Z")
)
flow_id: str | UUID | None = None
6.2 上下文状态管理
- 会话标识:通过 session_id 实现会话级别的数据隔离
- 时间戳管理:自动记录消息创建和更新时间
- 发送者追踪:区分 AI 和用户消息来源
- 流程关联:通过 flow_id 关联特定的工作流
6.3 状态持久化
python
async def astore_message(
message: Message,
flow_id: str | UUID | None = None,
) -> list[Message]:
"""存储消息到记忆系统"""
if not message:
logger.warning("No message provided.")
return []
if not message.session_id or not message.sender or not message.sender_name:
msg = (
f"All of session_id, sender, and sender_name must be provided. "
f"Session ID: {message.session_id}, Sender: {message.sender}, "
f"Sender Name: {message.sender_name}"
)
raise ValueError(msg)
if hasattr(message, "id") and message.id:
try:
return await aupdate_messages([message])
except ValueError as e:
logger.error(e)
if flow_id and not isinstance(flow_id, UUID):
flow_id = UUID(flow_id)
return await aadd_messages([message], flow_id=flow_id)
7. 记忆压缩和优化策略
7.1 消息更新机制
python
async def aupdate_messages(messages: Message | list[Message]) -> list[Message]:
if not isinstance(messages, list):
messages = [messages]
async with session_scope() as session:
updated_messages: list[MessageTable] = []
for message in messages:
msg = await session.get(MessageTable, message.id)
if msg:
msg = msg.sqlmodel_update(message.model_dump(exclude_unset=True, exclude_none=True))
# 转换 flow_id 为 UUID 防止保存错误
if msg.flow_id and isinstance(msg.flow_id, str):
msg.flow_id = UUID(msg.flow_id)
session.add(msg)
await session.commit()
await session.refresh(msg)
updated_messages.append(msg)
else:
error_message = f"Message with id {message.id} not found"
logger.warning(error_message)
raise ValueError(error_message)
return [MessageRead.model_validate(message, from_attributes=True) for message in updated_messages]
7.2 数据清理策略
python
async def adelete_messages(session_id: str) -> None:
"""删除指定会话的所有消息"""
async with session_scope() as session:
stmt = (
delete(MessageTable)
.where(col(MessageTable.session_id) == session_id)
.execution_options(synchronize_session="fetch")
)
await session.exec(stmt)
async def delete_message(id_: str) -> None:
"""删除单个消息"""
async with session_scope() as session:
message = await session.get(MessageTable, id_)
if message:
await session.delete(message)
await session.commit()
7.3 优化策略
- 批量操作:支持批量添加、更新和删除消息
- 增量更新:只更新变更的字段,减少数据传输
- 定期清理:提供会话级别的数据清理功能
- 索引优化:在关键字段建立数据库索引
8. 多类型记忆支持
8.1 内置记忆类型
聊天记忆组件
python
class MemoryComponent(Component):
display_name = "聊天历史"
description = "获取聊天历史。"
mode_config = {
"Store": ["message", "memory", "sender", "sender_name", "session_id"],
"Retrieve": ["n_messages", "order", "template", "memory"],
}
async def store_message(self) -> Message:
"""存储消息模式"""
message = Message(text=self.message) if isinstance(self.message, str) else self.message
message.session_id = self.session_id or message.session_id
message.sender = self.sender or message.sender or MESSAGE_SENDER_AI
message.sender_name = self.sender_name or message.sender_name or MESSAGE_SENDER_NAME_AI
if self.memory:
self.memory.session_id = message.session_id
lc_message = message.to_lc_message()
await self.memory.aadd_messages([lc_message])
stored_messages = await self.memory.aget_messages() or []
stored_messages = [Message.from_lc_message(m) for m in stored_messages] if stored_messages else []
else:
await astore_message(message, flow_id=self.graph.flow_id)
stored_messages = await aget_messages(
session_id=message.session_id,
sender_name=message.sender_name,
sender=message.sender
) or []
return stored_messages[0] if stored_messages else None
async def retrieve_messages(self) -> Data:
"""检索消息模式"""
sender_type = self.sender_type
if sender_type == "Machine and User":
sender_type = None
if self.memory:
self.memory.session_id = self.session_id
stored = await self.memory.aget_messages()
if self.order == "Descending":
stored = stored[::-1]
if self.n_messages:
stored = stored[-self.n_messages:] if self.order == "ASC" else stored[:self.n_messages]
stored = [Message.from_lc_message(m) for m in stored]
else:
stored = await aget_messages(
sender=sender_type,
sender_name=self.sender_name,
session_id=self.session_id,
limit=self.n_messages,
order="DESC" if self.order == "Descending" else "ASC",
)
return cast(Data, stored)
Mem0 外部记忆集成
python
class Mem0MemoryComponent(LCChatMemoryComponent):
display_name = "Mem0 Chat Memory"
description = "Retrieves and stores chat messages using Mem0 memory storage."
def build_mem0(self) -> Memory:
"""初始化 Mem0 记忆实例"""
if self.openai_api_key:
os.environ["OPENAI_API_KEY"] = self.openai_api_key
try:
if not self.mem0_api_key:
return Memory.from_config(config_dict=dict(self.mem0_config)) if self.mem0_config else Memory()
if self.mem0_config:
return MemoryClient.from_config(api_key=self.mem0_api_key, config_dict=dict(self.mem0_config))
return MemoryClient(api_key=self.mem0_api_key)
except ImportError as e:
msg = "Mem0 is not properly installed. Please install it with 'pip install -U mem0ai'."
raise ImportError(msg) from e
def ingest_data(self) -> Memory:
"""摄取数据到 Mem0 记忆"""
mem0_memory = self.existing_memory or self.build_mem0()
if not self.ingest_message or not self.user_id:
logger.warning("Missing 'ingest_message' or 'user_id'; cannot ingest data.")
return mem0_memory
metadata = self.metadata or {}
logger.info("Ingesting message for user_id: %s", self.user_id)
try:
mem0_memory.add(self.ingest_message, user_id=self.user_id, metadata=metadata)
except Exception:
logger.exception("Failed to add message to Mem0 memory.")
raise
return mem0_memory
def build_search_results(self) -> Data:
"""搜索相关记忆"""
mem0_memory = self.ingest_data()
search_query = self.search_query
user_id = self.user_id
try:
if search_query:
related_memories = mem0_memory.search(query=search_query, user_id=user_id)
else:
related_memories = mem0_memory.get_all(user_id=user_id)
except Exception:
logger.exception("Failed to retrieve related memories from Mem0.")
raise
return related_memories
8.2 记忆类型特点
- 短期记忆:基于会话的临时存储,会话结束后可清理
- 长期记忆:持久化存储,跨会话保持数据
- 工作记忆:当前对话上下文的活跃记忆
- 语义记忆:通过 Mem0 等服务实现的语义搜索记忆
9. 错误处理和数据一致性
9.1 异常处理机制
python
class ErrorMessage(Message):
"""专门用于错误消息的消息类"""
def __init__(
self,
exception: BaseException,
session_id: str | None = None,
source: Source | None = None,
trace_name: str | None = None,
flow_id: UUID | str | None = None,
) -> None:
if exception.__class__.__name__ == "ExceptionWithMessageError" and exception.__cause__ is not None:
exception = exception.__cause__
plain_reason = self._format_plain_reason(exception)
markdown_reason = self._format_markdown_reason(exception)
super().__init__(
session_id=session_id,
sender=source.display_name if source else None,
sender_name=source.display_name if source else None,
text=plain_reason,
properties=Properties(
text_color="red",
background_color="red",
edited=False,
source=source,
icon="error",
allow_markdown=False,
targets=[],
),
category="error",
error=True,
content_blocks=[
ContentBlock(
title="Error",
contents=[
ErrorContent(
type="error",
component=source.display_name if source else None,
field=str(exception.field) if hasattr(exception, "field") else None,
reason=markdown_reason,
solution=str(exception.solution) if hasattr(exception, "solution") else None,
traceback=traceback.format_exc(),
)
],
)
],
flow_id=flow_id,
)
9.2 数据验证机制
python
@field_validator("flow_id", mode="before")
@classmethod
def validate_flow_id(cls, value):
if value is None:
return value
if isinstance(value, str):
value = UUID(value)
return value
@field_validator("properties", "content_blocks", mode="before")
@classmethod
def validate_properties_or_content_blocks(cls, value):
if isinstance(value, list):
return [cls.validate_properties_or_content_blocks(item) for item in value]
if hasattr(value, "model_dump"):
return value.model_dump()
if isinstance(value, str):
return json.loads(value)
return value
9.3 一致性保障策略
- 事务完整性:使用数据库事务确保操作原子性
- 数据验证:Pydantic 模型提供强类型验证
- 异常恢复:完善的异常捕获和恢复机制
- 日志记录:详细的操作日志便于问题追踪
10. 与 LangChain Memory 的集成
10.1 LangChain 兼容性
python
class LCBuiltinChatMemory(BaseChatMessageHistory):
"""与 LangChain 兼容的内置聊天记忆"""
def __init__(self, flow_id: str, session_id: str) -> None:
self.flow_id = flow_id
self.session_id = session_id
@property
def messages(self) -> list[BaseMessage]:
messages = get_messages(session_id=self.session_id)
return [m.to_lc_message() for m in messages if not m.error]
async def aget_messages(self) -> list[BaseMessage]:
messages = await aget_messages(session_id=self.session_id)
return [m.to_lc_message() for m in messages if not m.error]
def add_messages(self, messages: Sequence[BaseMessage]) -> None:
for lc_message in messages:
message = Message.from_lc_message(lc_message)
message.session_id = self.session_id
store_message(message, flow_id=self.flow_id)
async def aadd_messages(self, messages: Sequence[BaseMessage]) -> None:
for lc_message in messages:
message = Message.from_lc_message(lc_message)
message.session_id = self.session_id
await astore_message(message, flow_id=self.flow_id)
def clear(self) -> None:
delete_messages(self.session_id)
async def aclear(self) -> None:
await adelete_messages(self.session_id)
10.2 消息格式转换
python
def to_lc_message(self) -> BaseMessage:
"""转换为 LangChain BaseMessage"""
if self.text is None or not self.sender:
logger.warning("Missing required keys ('text', 'sender') in Message, defaulting to HumanMessage.")
text = "" if not isinstance(self.text, str) else self.text
if self.sender == MESSAGE_SENDER_USER or not self.sender:
if self.files:
contents = [{"type": "text", "text": text}]
contents.extend(self.get_file_content_dicts())
human_message = HumanMessage(content=contents)
else:
human_message = HumanMessage(content=text)
return human_message
return AIMessage(content=text)
@classmethod
def from_lc_message(cls, lc_message: BaseMessage) -> Message:
"""从 LangChain BaseMessage 创建 Message"""
if lc_message.type == "human":
sender = MESSAGE_SENDER_USER
sender_name = MESSAGE_SENDER_NAME_USER
elif lc_message.type == "ai":
sender = MESSAGE_SENDER_AI
sender_name = MESSAGE_SENDER_NAME_AI
elif lc_message.type == "system":
sender = "System"
sender_name = "System"
else:
sender = lc_message.type
sender_name = lc_message.type
return cls(text=lc_message.content, sender=sender, sender_name=sender_name)
11. 内置记忆类型分析
11.1 基础聊天记忆
- 功能:存储和检索基本的对话历史
- 特点:支持会话隔离、发送者过滤、时间排序
- 适用场景:简单的问答对话、客服系统
11.2 Mem0 智能记忆
- 功能:基于语义的智能记忆存储和检索
- 特点:支持语义搜索、用户个性化、元数据关联
- 适用场景:个性化助手、知识管理系统
11.3 消息存储组件
- 功能:专门用于消息存储的轻量级组件
- 特点:简化的接口、快速存储、批量操作
- 适用场景:日志记录、消息归档
12. 自定义记忆组件开发
12.1 开发指南
python
class CustomMemoryComponent(BaseMemoryComponent):
display_name = "Custom Memory"
description = "Custom memory implementation"
def build_config(self):
config = super().build_config()
# 添加自定义配置
config.update({
"custom_param": {
"display_name": "Custom Parameter",
"info": "Custom parameter description",
}
})
return config
def get_messages(self, **kwargs) -> list[Data]:
# 实现自定义消息检索逻辑
pass
def add_message(
self, sender: str, sender_name: str, text: str,
session_id: str, metadata: dict | None = None, **kwargs
) -> None:
# 实现自定义消息添加逻辑
pass
12.2 扩展接口
- 存储后端扩展:支持 Redis、MongoDB 等不同存储后端
- 检索算法扩展:支持向量搜索、全文搜索等检索方式
- 压缩策略扩展:支持自定义的记忆压缩和清理策略
- 格式转换扩展:支持不同的消息格式和协议
13. 应用示例
13.1 基础聊天机器人记忆系统
python
from langflow.components.helpers.memory import MemoryComponent
from langflow.schema.message import Message
class ChatbotMemoryExample:
def __init__(self, session_id: str):
self.session_id = session_id
self.memory = MemoryComponent()
self.memory.session_id = session_id
self.memory.mode = "Retrieve"
self.memory.n_messages = 10
self.memory.order = "Ascending"
async def get_conversation_history(self) -> list[Message]:
"""获取对话历史"""
try:
# 检索最近10条消息
messages_data = await self.memory.retrieve_messages()
return messages_data if isinstance(messages_data, list) else []
except Exception as e:
print(f"Error retrieving messages: {e}")
return []
async def add_user_message(self, text: str) -> Message:
"""添加用户消息"""
message = Message(
text=text,
sender="User",
sender_name="User",
session_id=self.session_id
)
# 切换到存储模式
self.memory.mode = "Store"
self.memory.message = message
try:
stored_message = await self.memory.store_message()
return stored_message
except Exception as e:
print(f"Error storing user message: {e}")
return message
async def add_ai_response(self, text: str) -> Message:
"""添加AI响应"""
message = Message(
text=text,
sender="Machine",
sender_name="AI",
session_id=self.session_id
)
self.memory.mode = "Store"
self.memory.message = message
try:
stored_message = await self.memory.store_message()
return stored_message
except Exception as e:
print(f"Error storing AI message: {e}")
return message
async def format_conversation_context(self) -> str:
"""格式化对话上下文"""
messages = await self.get_conversation_history()
if not messages:
return "No conversation history available."
context_lines = []
for msg in messages[-5:]: # 只取最近5条消息
if hasattr(msg, 'sender_name') and hasattr(msg, 'text'):
context_lines.append(f"{msg.sender_name}: {msg.text}")
return "\n".join(context_lines)
# 使用示例
async def chatbot_example():
# 创建聊天机器人记忆实例
chatbot_memory = ChatbotMemoryExample("user_session_123")
# 添加用户消息
user_msg = await chatbot_memory.add_user_message("Hello, how are you?")
print(f"User message stored: {user_msg.text}")
# 添加AI响应
ai_msg = await chatbot_memory.add_ai_response("Hello! I'm doing well, thank you for asking. How can I help you today?")
print(f"AI response stored: {ai_msg.text}")
# 获取对话上下文
context = await chatbot_memory.format_conversation_context()
print(f"Conversation context:\n{context}")
# 继续对话
await chatbot_memory.add_user_message("Can you help me with Python programming?")
await chatbot_memory.add_ai_response("Of course! I'd be happy to help you with Python programming. What specific topic or problem would you like assistance with?")
# 获取更新后的对话历史
history = await chatbot_memory.get_conversation_history()
print(f"Total messages in history: {len(history)}")
13.2 智能个人助手记忆系统
python
from langflow.components.mem0.mem0_chat_memory import Mem0MemoryComponent
from langflow.schema.message import Message
class PersonalAssistantMemory:
def __init__(self, user_id: str, mem0_api_key: str = None):
self.user_id = user_id
self.mem0_component = Mem0MemoryComponent()
self.mem0_component.user_id = user_id
self.mem0_component.mem0_api_key = mem0_api_key
# 配置 Mem0 设置
self.mem0_component.mem0_config = {
"graph_store": {
"provider": "neo4j",
"config": {
"url": "neo4j+s://your-neo4j-url",
"username": "neo4j",
"password": "your-password"
}
},
"version": "v1.1"
}
async def learn_user_preference(self, preference_text: str, category: str = "general") -> None:
"""学习用户偏好"""
self.mem0_component.ingest_message = preference_text
self.mem0_component.metadata = {
"category": category,
"type": "preference",
"timestamp": datetime.now().isoformat()
}
try:
memory = self.mem0_component.ingest_data()
print(f"Learned user preference: {preference_text}")
except Exception as e:
print(f"Error learning preference: {e}")
async def recall_related_memories(self, query: str) -> list:
"""回忆相关记忆"""
self.mem0_component.search_query = query
try:
related_memories = self.mem0_component.build_search_results()
return related_memories if isinstance(related_memories, list) else []
except Exception as e:
print(f"Error recalling memories: {e}")
return []
async def get_user_context(self, current_topic: str) -> dict:
"""获取用户上下文信息"""
# 搜索相关记忆
related_memories = await self.recall_related_memories(current_topic)
# 获取用户偏好
preferences = await self.recall_related_memories("preference")
return {
"related_memories": related_memories,
"user_preferences": preferences,
"user_id": self.user_id,
"current_topic": current_topic
}
async def personalized_response(self, user_query: str) -> str:
"""基于记忆生成个性化响应"""
# 获取用户上下文
context = await self.get_user_context(user_query)
# 构建个性化响应(这里简化处理)
response_parts = [f"Based on what I know about you, {self.user_id}:"]
if context["user_preferences"]:
response_parts.append("I remember your preferences include:")
for pref in context["user_preferences"][:3]: # 只显示前3个偏好
if hasattr(pref, 'text'):
response_parts.append(f"- {pref.text}")
if context["related_memories"]:
response_parts.append("Related to your query, I recall:")
for memory in context["related_memories"][:2]: # 只显示前2个相关记忆
if hasattr(memory, 'text'):
response_parts.append(f"- {memory.text}")
response_parts.append(f"Now, regarding '{user_query}', let me help you...")
return "\n".join(response_parts)
# 使用示例
async def personal_assistant_example():
# 创建个人助手记忆实例
assistant = PersonalAssistantMemory("alice_user_456")
# 学习用户偏好
await assistant.learn_user_preference("I prefer vegetarian food", "food")
await assistant.learn_user_preference("I like morning workouts", "fitness")
await assistant.learn_user_preference("I work in software development", "career")
await assistant.learn_user_preference("I enjoy reading science fiction books", "hobbies")
# 模拟用户查询
user_queries = [
"Can you recommend a restaurant?",
"What's a good exercise routine?",
"I need help with my career development",
"What book should I read next?"
]
for query in user_queries:
print(f"\nUser Query: {query}")
response = await assistant.personalized_response(query)
print(f"Assistant Response:\n{response}")
print("-" * 50)
# 展示记忆检索功能
print("\nRecalling memories about 'food':")
food_memories = await assistant.recall_related_memories("food")
for memory in food_memories:
if hasattr(memory, 'text'):
print(f"- {memory.text}")
# 运行示例
if __name__ == "__main__":
import asyncio
# 运行聊天机器人示例
print("=== Chatbot Memory Example ===")
asyncio.run(chatbot_example())
print("\n" + "="*60 + "\n")
# 运行个人助手示例
print("=== Personal Assistant Memory Example ===")
asyncio.run(personal_assistant_example())
14. 总结
Langflow 的 Memory 系统是一个功能强大、设计精良的记忆管理框架,具有以下核心优势:
14.1 技术优势
- 分层架构:清晰的抽象层次,便于扩展和维护
- 异步优先:全面的异步支持,提升并发性能
- 类型安全:强类型验证确保数据一致性
- 多后端支持:灵活的存储后端选择
- LangChain 兼容:无缝集成现有的 LangChain 生态
14.2 应用价值
- 对话系统:为聊天机器人提供持久化记忆能力
- 个性化服务:支持用户偏好学习和个性化响应
- 知识管理:构建智能的知识存储和检索系统
- 上下文感知:维护长期对话上下文和状态
14.3 发展方向
- 性能优化:进一步优化查询性能和存储效率
- 智能压缩:开发更智能的记忆压缩和清理策略
- 多模态支持:扩展对图像、音频等多模态数据的记忆能力
- 分布式架构:支持分布式部署和横向扩展
Langflow 的 Memory 系统为构建智能对话应用提供了坚实的技术基础,其灵活的架构设计和丰富的功能特性使其能够适应各种复杂的应用场景需求。