液态神经网络(LNN)1:LTC改进成CFC思路

从液态时间常数网络(Liquid Time-Constant Networks, LTC)到其闭式解版本------闭式连续时间网络(Closed-form Continuous-time Networks, CfC) 的推导过程,可以分为以下几个关键步骤。我们将基于你提供的两篇论文(2020年LTC和2022年CfC)进行梳理:

一、LTC 的原始微分方程形式

LTC 的隐藏状态 x(t)x(t) 由以下非线性常微分方程(ODE)描述:

二、动机:从数值求解到闭式近似

LTC 依赖于数值 ODE 求解器(如 Euler、Runge-Kutta),计算成本高且存在数值误差。
目标 :找到一个闭式近似解,避免数值积分,提升计算效率。

相关推荐
xz2024102****13 小时前
吴恩达机器学习作业五:神经网络正向传播
人工智能·神经网络·机器学习
cici1587420 小时前
matlab-神经网络的语音识别
神经网络·matlab·语音识别
深度学习入门1 天前
如何使用PyTorch搭建一个基础的神经网络并进行训练?
人工智能·pytorch·python·深度学习·神经网络·ai
可触的未来,发芽的智生2 天前
微论-突触的作用赋能思考(可能是下一代人工智能架构的启发式理论)
人工智能·神经网络·架构·启发式算法
Learn Beyond Limits2 天前
Iterative loop of ML development|机器学习的迭代发展
人工智能·深度学习·神经网络·学习·机器学习·ai·吴恩达
Learn Beyond Limits2 天前
Bias / variance and neural networks|偏差/方差和神经网络
人工智能·深度学习·神经网络·机器学习·ai·正则表达式·吴恩达
Stara05112 天前
基于Ultralytics YOLO通用目标检测训练体系与PyTorch EfficientNet的图像分类体系实现
pytorch·深度学习·神经网络·yolo·目标检测·计算机视觉·迁移学习
技术与健康3 天前
【系列08】端侧AI:构建与部署高效的本地化AI模型 第7章:架构设计与高效算子
人工智能·神经网络·cnn
西猫雷婶3 天前
神经网络|(十六)概率论基础知识-伽马函数·中
人工智能·深度学习·神经网络·学习·机器学习·概率论