01-Hadoop简介与生态系统

1.1 什么是Hadoop

1.1.1 Hadoop定义

Apache Hadoop是一个开源的分布式存储和计算框架,专门设计用于处理大规模数据集。它基于Google发表的MapReduce和Google File System(GFS)论文实现,为大数据处理提供了可靠、可扩展和分布式的解决方案。

1.1.2 Hadoop的核心特性

分布式存储
  • HDFS(Hadoop Distributed File System):分布式文件系统
  • 数据冗余:自动数据备份,保证数据可靠性
  • 容错性:节点故障时自动恢复
分布式计算
  • MapReduce:并行计算框架
  • 任务调度:自动任务分配和管理
  • 负载均衡:计算资源的合理分配
可扩展性
  • 水平扩展:通过增加节点提升性能
  • 线性扩展:性能与节点数量成正比
  • 弹性伸缩:根据需求动态调整集群规模

1.1.3 Hadoop的优势

markdown 复制代码
# Hadoop核心优势

## 1. 成本效益
- 使用商用硬件,降低成本
- 开源软件,无许可费用
- 高性价比的大数据解决方案

## 2. 可靠性
- 数据自动备份(默认3副本)
- 故障自动检测和恢复
- 无单点故障设计

## 3. 可扩展性
- 支持PB级数据存储
- 支持数千节点集群
- 线性性能扩展

## 4. 灵活性
- 支持结构化、半结构化、非结构化数据
- 多种数据格式支持
- 丰富的生态系统工具

1.2 Hadoop发展历史

1.2.1 发展时间线

timeline 复制代码
2003年:Google发布GFS论文
2004年:Google发布MapReduce论文
2005年:Doug Cutting开始开发Hadoop
2006年:Hadoop成为Apache顶级项目
2008年:Yahoo!部署4000节点Hadoop集群
2011年:Hadoop 1.0发布
2012年:YARN项目启动
2013年:Hadoop 2.0发布
2017年:Hadoop 3.0发布
2020年:Hadoop 3.3发布(当前稳定版)

1.2.2 版本演进

Hadoop 1.x
  • 核心组件:HDFS + MapReduce
  • 特点:简单架构,易于理解
  • 限制:JobTracker单点故障,扩展性有限
Hadoop 2.x
  • 重大改进:引入YARN资源管理器
  • 架构变化:MapReduce从资源管理中分离
  • 新特性:支持多种计算框架
Hadoop 3.x
  • 性能提升:更好的性能和稳定性
  • 新特性:纠删码、多NameNode支持
  • 云原生:更好的云环境支持

1.3 Hadoop核心组件

1.3.1 HDFS(Hadoop Distributed File System)

python 复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
HDFS架构示例代码
演示HDFS的基本概念和操作
"""

from hdfs import InsecureClient
import os
import json
from typing import List, Dict, Any

class HDFSManager:
    """HDFS管理器"""
    
    def __init__(self, namenode_url: str = "http://localhost:9870"):
        """
        初始化HDFS客户端
        
        Args:
            namenode_url: NameNode的URL地址
        """
        self.client = InsecureClient(namenode_url)
        self.replication_factor = 3  # 默认副本数
        self.block_size = 128 * 1024 * 1024  # 默认块大小128MB
    
    def create_directory(self, path: str) -> bool:
        """
        创建HDFS目录
        
        Args:
            path: 目录路径
            
        Returns:
            bool: 创建是否成功
        """
        try:
            self.client.makedirs(path)
            print(f"目录创建成功: {path}")
            return True
        except Exception as e:
            print(f"目录创建失败: {e}")
            return False
    
    def upload_file(self, local_path: str, hdfs_path: str, overwrite: bool = False) -> bool:
        """
        上传文件到HDFS
        
        Args:
            local_path: 本地文件路径
            hdfs_path: HDFS目标路径
            overwrite: 是否覆盖已存在文件
            
        Returns:
            bool: 上传是否成功
        """
        try:
            with open(local_path, 'rb') as local_file:
                self.client.write(hdfs_path, local_file, overwrite=overwrite)
            print(f"文件上传成功: {local_path} -> {hdfs_path}")
            return True
        except Exception as e:
            print(f"文件上传失败: {e}")
            return False
    
    def download_file(self, hdfs_path: str, local_path: str) -> bool:
        """
        从HDFS下载文件
        
        Args:
            hdfs_path: HDFS文件路径
            local_path: 本地目标路径
            
        Returns:
            bool: 下载是否成功
        """
        try:
            with self.client.read(hdfs_path) as hdfs_file:
                with open(local_path, 'wb') as local_file:
                    local_file.write(hdfs_file.read())
            print(f"文件下载成功: {hdfs_path} -> {local_path}")
            return True
        except Exception as e:
            print(f"文件下载失败: {e}")
            return False
    
    def list_directory(self, path: str = "/") -> List[Dict[str, Any]]:
        """
        列出HDFS目录内容
        
        Args:
            path: 目录路径
            
        Returns:
            List[Dict]: 目录内容列表
        """
        try:
            files = self.client.list(path, status=True)
            result = []
            for file_name, file_status in files:
                result.append({
                    'name': file_name,
                    'type': 'directory' if file_status['type'] == 'DIRECTORY' else 'file',
                    'size': file_status.get('length', 0),
                    'replication': file_status.get('replication', 0),
                    'block_size': file_status.get('blockSize', 0),
                    'modification_time': file_status.get('modificationTime', 0),
                    'permission': file_status.get('permission', ''),
                    'owner': file_status.get('owner', ''),
                    'group': file_status.get('group', '')
                })
            return result
        except Exception as e:
            print(f"列出目录失败: {e}")
            return []
    
    def get_file_info(self, path: str) -> Dict[str, Any]:
        """
        获取文件信息
        
        Args:
            path: 文件路径
            
        Returns:
            Dict: 文件信息
        """
        try:
            status = self.client.status(path)
            return {
                'path': path,
                'type': status['type'],
                'size': status.get('length', 0),
                'replication': status.get('replication', 0),
                'block_size': status.get('blockSize', 0),
                'modification_time': status.get('modificationTime', 0),
                'access_time': status.get('accessTime', 0),
                'permission': status.get('permission', ''),
                'owner': status.get('owner', ''),
                'group': status.get('group', '')
            }
        except Exception as e:
            print(f"获取文件信息失败: {e}")
            return {}
    
    def delete_file(self, path: str, recursive: bool = False) -> bool:
        """
        删除HDFS文件或目录
        
        Args:
            path: 文件或目录路径
            recursive: 是否递归删除
            
        Returns:
            bool: 删除是否成功
        """
        try:
            self.client.delete(path, recursive=recursive)
            print(f"删除成功: {path}")
            return True
        except Exception as e:
            print(f"删除失败: {e}")
            return False
    
    def get_cluster_info(self) -> Dict[str, Any]:
        """
        获取HDFS集群信息
        
        Returns:
            Dict: 集群信息
        """
        try:
            # 获取文件系统统计信息
            fs_stats = self.client.status('/')
            
            # 模拟集群信息(实际应该通过WebHDFS API获取)
            cluster_info = {
                'cluster_id': 'hadoop-cluster-001',
                'namenode_address': self.client.url,
                'total_capacity': '1TB',  # 实际应该从API获取
                'used_capacity': '256GB',
                'available_capacity': '768GB',
                'total_files': 10000,
                'total_blocks': 50000,
                'missing_blocks': 0,
                'corrupt_blocks': 0,
                'under_replicated_blocks': 0,
                'datanodes': [
                    {'hostname': 'datanode1', 'status': 'live'},
                    {'hostname': 'datanode2', 'status': 'live'},
                    {'hostname': 'datanode3', 'status': 'live'}
                ]
            }
            
            return cluster_info
        except Exception as e:
            print(f"获取集群信息失败: {e}")
            return {}
    
    def check_file_health(self, path: str) -> Dict[str, Any]:
        """
        检查文件健康状态
        
        Args:
            path: 文件路径
            
        Returns:
            Dict: 文件健康状态
        """
        try:
            file_info = self.get_file_info(path)
            if not file_info:
                return {'status': 'not_found'}
            
            # 检查副本数
            replication = file_info.get('replication', 0)
            expected_replication = self.replication_factor
            
            health_status = {
                'path': path,
                'status': 'healthy',
                'replication': {
                    'current': replication,
                    'expected': expected_replication,
                    'status': 'ok' if replication >= expected_replication else 'under_replicated'
                },
                'size': file_info.get('size', 0),
                'blocks': file_info.get('size', 0) // self.block_size + 1,
                'last_modified': file_info.get('modification_time', 0)
            }
            
            if replication < expected_replication:
                health_status['status'] = 'warning'
                health_status['issues'] = ['under_replicated']
            
            return health_status
        except Exception as e:
            print(f"检查文件健康状态失败: {e}")
            return {'status': 'error', 'message': str(e)}

# 使用示例
if __name__ == "__main__":
    # 创建HDFS管理器
    hdfs = HDFSManager("http://localhost:9870")
    
    # 创建目录
    hdfs.create_directory("/user/hadoop/data")
    
    # 上传文件
    # hdfs.upload_file("local_file.txt", "/user/hadoop/data/file.txt")
    
    # 列出目录内容
    files = hdfs.list_directory("/user/hadoop")
    print("目录内容:")
    for file_info in files:
        print(f"  {file_info['name']} ({file_info['type']}) - {file_info['size']} bytes")
    
    # 获取集群信息
    cluster_info = hdfs.get_cluster_info()
    print(f"\n集群信息: {json.dumps(cluster_info, indent=2, ensure_ascii=False)}")

1.3.2 MapReduce计算框架

python 复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
MapReduce编程示例
演示MapReduce的基本概念和编程模型
"""

import sys
import re
from collections import defaultdict
from typing import Iterator, Tuple, List, Dict, Any
import json

class MapReduceFramework:
    """MapReduce框架模拟器"""
    
    def __init__(self):
        self.mappers = []
        self.reducers = []
        self.intermediate_data = defaultdict(list)
    
    def map_phase(self, input_data: List[str], mapper_func) -> Dict[str, List[Any]]:
        """
        Map阶段:将输入数据分发给多个Mapper处理
        
        Args:
            input_data: 输入数据列表
            mapper_func: Mapper函数
            
        Returns:
            Dict: 中间结果数据
        """
        intermediate_results = defaultdict(list)
        
        for data in input_data:
            # 每个Mapper处理一部分数据
            for key, value in mapper_func(data):
                intermediate_results[key].append(value)
        
        return dict(intermediate_results)
    
    def shuffle_phase(self, intermediate_data: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
        """
        Shuffle阶段:对中间结果进行分组和排序
        
        Args:
            intermediate_data: 中间结果数据
            
        Returns:
            Dict: 分组后的数据
        """
        # 按key进行分组(已经在map阶段完成)
        # 在真实的Hadoop中,这个阶段会涉及网络传输和排序
        shuffled_data = {}
        for key in sorted(intermediate_data.keys()):
            shuffled_data[key] = sorted(intermediate_data[key])
        
        return shuffled_data
    
    def reduce_phase(self, shuffled_data: Dict[str, List[Any]], reducer_func) -> Dict[str, Any]:
        """
        Reduce阶段:对分组后的数据进行聚合处理
        
        Args:
            shuffled_data: 分组后的数据
            reducer_func: Reducer函数
            
        Returns:
            Dict: 最终结果
        """
        final_results = {}
        
        for key, values in shuffled_data.items():
            result = reducer_func(key, values)
            if result is not None:
                final_results[key] = result
        
        return final_results
    
    def run_job(self, input_data: List[str], mapper_func, reducer_func) -> Dict[str, Any]:
        """
        运行完整的MapReduce作业
        
        Args:
            input_data: 输入数据
            mapper_func: Mapper函数
            reducer_func: Reducer函数
            
        Returns:
            Dict: 最终结果
        """
        print("开始MapReduce作业...")
        
        # Map阶段
        print("执行Map阶段...")
        intermediate_data = self.map_phase(input_data, mapper_func)
        print(f"Map阶段完成,生成{len(intermediate_data)}个中间键")
        
        # Shuffle阶段
        print("执行Shuffle阶段...")
        shuffled_data = self.shuffle_phase(intermediate_data)
        print("Shuffle阶段完成")
        
        # Reduce阶段
        print("执行Reduce阶段...")
        final_results = self.reduce_phase(shuffled_data, reducer_func)
        print(f"Reduce阶段完成,生成{len(final_results)}个最终结果")
        
        return final_results

# WordCount示例
def word_count_mapper(line: str) -> Iterator[Tuple[str, int]]:
    """
    WordCount的Mapper函数
    
    Args:
        line: 输入的一行文本
        
    Yields:
        Tuple[str, int]: (单词, 1)的键值对
    """
    # 清理文本并分割单词
    words = re.findall(r'\b\w+\b', line.lower())
    for word in words:
        yield (word, 1)

def word_count_reducer(word: str, counts: List[int]) -> int:
    """
    WordCount的Reducer函数
    
    Args:
        word: 单词
        counts: 该单词的计数列表
        
    Returns:
        int: 单词的总计数
    """
    return sum(counts)

# 日志分析示例
def log_analysis_mapper(log_line: str) -> Iterator[Tuple[str, Dict[str, Any]]]:
    """
    日志分析的Mapper函数
    
    Args:
        log_line: 日志行
        
    Yields:
        Tuple[str, Dict]: (IP地址, 请求信息)的键值对
    """
    # 简单的日志解析(假设是Apache访问日志格式)
    # 192.168.1.1 - - [10/Oct/2023:13:55:36 +0000] "GET /index.html HTTP/1.1" 200 2326
    parts = log_line.split()
    if len(parts) >= 10:
        ip = parts[0]
        timestamp = parts[3] + ' ' + parts[4]
        method = parts[5].strip('"')
        url = parts[6]
        status_code = parts[8]
        response_size = parts[9] if parts[9].isdigit() else 0
        
        yield (ip, {
            'timestamp': timestamp,
            'method': method,
            'url': url,
            'status_code': int(status_code),
            'response_size': int(response_size),
            'request_count': 1
        })

def log_analysis_reducer(ip: str, requests: List[Dict[str, Any]]) -> Dict[str, Any]:
    """
    日志分析的Reducer函数
    
    Args:
        ip: IP地址
        requests: 该IP的请求列表
        
    Returns:
        Dict: IP的统计信息
    """
    total_requests = len(requests)
    total_bytes = sum(req['response_size'] for req in requests)
    status_codes = defaultdict(int)
    methods = defaultdict(int)
    urls = defaultdict(int)
    
    for req in requests:
        status_codes[req['status_code']] += 1
        methods[req['method']] += 1
        urls[req['url']] += 1
    
    return {
        'total_requests': total_requests,
        'total_bytes': total_bytes,
        'avg_response_size': total_bytes / total_requests if total_requests > 0 else 0,
        'status_codes': dict(status_codes),
        'methods': dict(methods),
        'top_urls': dict(sorted(urls.items(), key=lambda x: x[1], reverse=True)[:5])
    }

# 销售数据分析示例
def sales_analysis_mapper(sales_record: str) -> Iterator[Tuple[str, Dict[str, Any]]]:
    """
    销售数据分析的Mapper函数
    
    Args:
        sales_record: 销售记录(CSV格式)
        
    Yields:
        Tuple[str, Dict]: (产品类别, 销售信息)的键值对
    """
    # 假设CSV格式:date,product_id,category,quantity,price,customer_id
    parts = sales_record.strip().split(',')
    if len(parts) == 6:
        date, product_id, category, quantity, price, customer_id = parts
        try:
            quantity = int(quantity)
            price = float(price)
            revenue = quantity * price
            
            yield (category, {
                'date': date,
                'product_id': product_id,
                'quantity': quantity,
                'price': price,
                'revenue': revenue,
                'customer_id': customer_id
            })
        except ValueError:
            pass  # 跳过无效记录

def sales_analysis_reducer(category: str, sales: List[Dict[str, Any]]) -> Dict[str, Any]:
    """
    销售数据分析的Reducer函数
    
    Args:
        category: 产品类别
        sales: 该类别的销售记录列表
        
    Returns:
        Dict: 类别的统计信息
    """
    total_quantity = sum(sale['quantity'] for sale in sales)
    total_revenue = sum(sale['revenue'] for sale in sales)
    unique_customers = len(set(sale['customer_id'] for sale in sales))
    unique_products = len(set(sale['product_id'] for sale in sales))
    
    avg_price = sum(sale['price'] for sale in sales) / len(sales)
    avg_quantity_per_order = total_quantity / len(sales)
    
    return {
        'total_orders': len(sales),
        'total_quantity': total_quantity,
        'total_revenue': total_revenue,
        'unique_customers': unique_customers,
        'unique_products': unique_products,
        'avg_price': avg_price,
        'avg_quantity_per_order': avg_quantity_per_order,
        'avg_revenue_per_order': total_revenue / len(sales)
    }

# 使用示例
if __name__ == "__main__":
    # 创建MapReduce框架
    mr_framework = MapReduceFramework()
    
    print("=== WordCount示例 ===")
    # WordCount示例
    text_data = [
        "Hello world hello hadoop",
        "Hadoop is great for big data",
        "Big data processing with hadoop",
        "Hello big data world"
    ]
    
    word_counts = mr_framework.run_job(text_data, word_count_mapper, word_count_reducer)
    print("\n单词计数结果:")
    for word, count in sorted(word_counts.items()):
        print(f"  {word}: {count}")
    
    print("\n=== 日志分析示例 ===")
    # 日志分析示例
    log_data = [
        '192.168.1.1 - - [10/Oct/2023:13:55:36 +0000] "GET /index.html HTTP/1.1" 200 2326',
        '192.168.1.1 - - [10/Oct/2023:13:55:37 +0000] "GET /about.html HTTP/1.1" 200 1024',
        '192.168.1.2 - - [10/Oct/2023:13:55:38 +0000] "POST /api/data HTTP/1.1" 201 512',
        '192.168.1.1 - - [10/Oct/2023:13:55:39 +0000] "GET /contact.html HTTP/1.1" 404 256',
        '192.168.1.3 - - [10/Oct/2023:13:55:40 +0000] "GET /index.html HTTP/1.1" 200 2326'
    ]
    
    log_analysis = mr_framework.run_job(log_data, log_analysis_mapper, log_analysis_reducer)
    print("\n日志分析结果:")
    for ip, stats in log_analysis.items():
        print(f"  IP {ip}:")
        print(f"    总请求数: {stats['total_requests']}")
        print(f"    总字节数: {stats['total_bytes']}")
        print(f"    状态码分布: {stats['status_codes']}")
        print(f"    请求方法: {stats['methods']}")
    
    print("\n=== 销售数据分析示例 ===")
    # 销售数据分析示例
    sales_data = [
        "2023-10-01,P001,Electronics,2,299.99,C001",
        "2023-10-01,P002,Books,1,19.99,C002",
        "2023-10-01,P003,Electronics,1,599.99,C003",
        "2023-10-02,P004,Books,3,29.99,C001",
        "2023-10-02,P005,Clothing,2,49.99,C004",
        "2023-10-02,P001,Electronics,1,299.99,C005"
    ]
    
    sales_analysis = mr_framework.run_job(sales_data, sales_analysis_mapper, sales_analysis_reducer)
    print("\n销售数据分析结果:")
    for category, stats in sales_analysis.items():
        print(f"  类别 {category}:")
        print(f"    总订单数: {stats['total_orders']}")
        print(f"    总销量: {stats['total_quantity']}")
        print(f"    总收入: ${stats['total_revenue']:.2f}")
        print(f"    独立客户数: {stats['unique_customers']}")
        print(f"    平均订单金额: ${stats['avg_revenue_per_order']:.2f}")

1.3.3 YARN资源管理器

python 复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
YARN资源管理示例
演示YARN的资源调度和应用管理
"""

import time
import uuid
from enum import Enum
from dataclasses import dataclass
from typing import Dict, List, Optional, Any
from datetime import datetime
import threading
import queue

class ApplicationState(Enum):
    """应用状态枚举"""
    NEW = "NEW"
    SUBMITTED = "SUBMITTED"
    ACCEPTED = "ACCEPTED"
    RUNNING = "RUNNING"
    FINISHED = "FINISHED"
    FAILED = "FAILED"
    KILLED = "KILLED"

class ContainerState(Enum):
    """容器状态枚举"""
    NEW = "NEW"
    ALLOCATED = "ALLOCATED"
    RUNNING = "RUNNING"
    COMPLETE = "COMPLETE"
    FAILED = "FAILED"

@dataclass
class Resource:
    """资源定义"""
    memory_mb: int
    vcores: int
    
    def __add__(self, other):
        return Resource(
            memory_mb=self.memory_mb + other.memory_mb,
            vcores=self.vcores + other.vcores
        )
    
    def __sub__(self, other):
        return Resource(
            memory_mb=self.memory_mb - other.memory_mb,
            vcores=self.vcores - other.vcores
        )
    
    def can_satisfy(self, required: 'Resource') -> bool:
        """检查是否能满足资源需求"""
        return (self.memory_mb >= required.memory_mb and 
                self.vcores >= required.vcores)

@dataclass
class Container:
    """容器定义"""
    container_id: str
    node_id: str
    resource: Resource
    state: ContainerState
    application_id: str
    start_time: Optional[datetime] = None
    finish_time: Optional[datetime] = None
    exit_code: int = 0
    diagnostics: str = ""

@dataclass
class Application:
    """应用定义"""
    application_id: str
    application_name: str
    application_type: str
    user: str
    queue: str
    state: ApplicationState
    resource_request: Resource
    submit_time: datetime
    start_time: Optional[datetime] = None
    finish_time: Optional[datetime] = None
    progress: float = 0.0
    containers: List[Container] = None
    
    def __post_init__(self):
        if self.containers is None:
            self.containers = []

@dataclass
class NodeManager:
    """节点管理器"""
    node_id: str
    hostname: str
    total_resource: Resource
    available_resource: Resource
    used_resource: Resource
    containers: List[Container]
    last_heartbeat: datetime
    
    def __post_init__(self):
        if self.containers is None:
            self.containers = []
        if self.used_resource is None:
            self.used_resource = Resource(0, 0)
        if self.available_resource is None:
            self.available_resource = self.total_resource

class ResourceScheduler:
    """资源调度器"""
    
    def __init__(self, scheduler_type: str = "fair"):
        self.scheduler_type = scheduler_type
        self.queues = {
            "default": {"capacity": 0.5, "max_capacity": 1.0},
            "production": {"capacity": 0.3, "max_capacity": 0.6},
            "development": {"capacity": 0.2, "max_capacity": 0.4}
        }
    
    def schedule_application(self, application: Application, 
                           available_nodes: List[NodeManager]) -> Optional[NodeManager]:
        """
        为应用调度资源
        
        Args:
            application: 待调度的应用
            available_nodes: 可用节点列表
            
        Returns:
            Optional[NodeManager]: 分配的节点,如果没有可用资源则返回None
        """
        # 根据调度策略选择节点
        if self.scheduler_type == "fair":
            return self._fair_scheduler(application, available_nodes)
        elif self.scheduler_type == "capacity":
            return self._capacity_scheduler(application, available_nodes)
        else:
            return self._fifo_scheduler(application, available_nodes)
    
    def _fair_scheduler(self, application: Application, 
                       available_nodes: List[NodeManager]) -> Optional[NodeManager]:
        """公平调度器"""
        # 选择资源利用率最低的节点
        best_node = None
        min_utilization = float('inf')
        
        for node in available_nodes:
            if node.available_resource.can_satisfy(application.resource_request):
                # 计算资源利用率
                memory_util = node.used_resource.memory_mb / node.total_resource.memory_mb
                cpu_util = node.used_resource.vcores / node.total_resource.vcores
                avg_util = (memory_util + cpu_util) / 2
                
                if avg_util < min_utilization:
                    min_utilization = avg_util
                    best_node = node
        
        return best_node
    
    def _capacity_scheduler(self, application: Application, 
                          available_nodes: List[NodeManager]) -> Optional[NodeManager]:
        """容量调度器"""
        # 根据队列容量进行调度
        queue_info = self.queues.get(application.queue, self.queues["default"])
        
        # 简化实现:选择第一个满足条件的节点
        for node in available_nodes:
            if node.available_resource.can_satisfy(application.resource_request):
                return node
        
        return None
    
    def _fifo_scheduler(self, application: Application, 
                       available_nodes: List[NodeManager]) -> Optional[NodeManager]:
        """FIFO调度器"""
        # 选择第一个满足条件的节点
        for node in available_nodes:
            if node.available_resource.can_satisfy(application.resource_request):
                return node
        
        return None

class YARNResourceManager:
    """YARN资源管理器"""
    
    def __init__(self, scheduler_type: str = "fair"):
        self.applications: Dict[str, Application] = {}
        self.nodes: Dict[str, NodeManager] = {}
        self.containers: Dict[str, Container] = {}
        self.scheduler = ResourceScheduler(scheduler_type)
        self.application_queue = queue.Queue()
        self.running = False
        self.scheduler_thread = None
    
    def register_node(self, node_id: str, hostname: str, 
                     memory_mb: int, vcores: int) -> bool:
        """
        注册节点管理器
        
        Args:
            node_id: 节点ID
            hostname: 主机名
            memory_mb: 内存大小(MB)
            vcores: 虚拟核心数
            
        Returns:
            bool: 注册是否成功
        """
        try:
            total_resource = Resource(memory_mb, vcores)
            node = NodeManager(
                node_id=node_id,
                hostname=hostname,
                total_resource=total_resource,
                available_resource=total_resource,
                used_resource=Resource(0, 0),
                containers=[],
                last_heartbeat=datetime.now()
            )
            
            self.nodes[node_id] = node
            print(f"节点注册成功: {node_id} ({hostname}) - {memory_mb}MB, {vcores} cores")
            return True
        except Exception as e:
            print(f"节点注册失败: {e}")
            return False
    
    def submit_application(self, application_name: str, application_type: str,
                          user: str, queue: str, memory_mb: int, vcores: int) -> str:
        """
        提交应用
        
        Args:
            application_name: 应用名称
            application_type: 应用类型
            user: 用户
            queue: 队列
            memory_mb: 内存需求(MB)
            vcores: CPU核心需求
            
        Returns:
            str: 应用ID
        """
        application_id = f"application_{int(time.time())}_{uuid.uuid4().hex[:8]}"
        
        application = Application(
            application_id=application_id,
            application_name=application_name,
            application_type=application_type,
            user=user,
            queue=queue,
            state=ApplicationState.SUBMITTED,
            resource_request=Resource(memory_mb, vcores),
            submit_time=datetime.now()
        )
        
        self.applications[application_id] = application
        self.application_queue.put(application_id)
        
        print(f"应用提交成功: {application_id} ({application_name})")
        return application_id
    
    def allocate_container(self, application_id: str, node: NodeManager) -> Optional[Container]:
        """
        分配容器
        
        Args:
            application_id: 应用ID
            node: 目标节点
            
        Returns:
            Optional[Container]: 分配的容器
        """
        application = self.applications.get(application_id)
        if not application:
            return None
        
        # 检查节点资源是否足够
        if not node.available_resource.can_satisfy(application.resource_request):
            return None
        
        # 创建容器
        container_id = f"container_{application_id}_{len(application.containers) + 1}"
        container = Container(
            container_id=container_id,
            node_id=node.node_id,
            resource=application.resource_request,
            state=ContainerState.ALLOCATED,
            application_id=application_id,
            start_time=datetime.now()
        )
        
        # 更新资源使用情况
        node.available_resource = node.available_resource - application.resource_request
        node.used_resource = node.used_resource + application.resource_request
        node.containers.append(container)
        
        # 更新应用状态
        application.containers.append(container)
        if application.state == ApplicationState.ACCEPTED:
            application.state = ApplicationState.RUNNING
            application.start_time = datetime.now()
        
        self.containers[container_id] = container
        
        print(f"容器分配成功: {container_id} 在节点 {node.node_id}")
        return container
    
    def start_container(self, container_id: str) -> bool:
        """
        启动容器
        
        Args:
            container_id: 容器ID
            
        Returns:
            bool: 启动是否成功
        """
        container = self.containers.get(container_id)
        if not container:
            return False
        
        container.state = ContainerState.RUNNING
        print(f"容器启动成功: {container_id}")
        return True
    
    def complete_container(self, container_id: str, exit_code: int = 0, 
                          diagnostics: str = "") -> bool:
        """
        完成容器
        
        Args:
            container_id: 容器ID
            exit_code: 退出码
            diagnostics: 诊断信息
            
        Returns:
            bool: 完成是否成功
        """
        container = self.containers.get(container_id)
        if not container:
            return False
        
        # 更新容器状态
        container.state = ContainerState.COMPLETE if exit_code == 0 else ContainerState.FAILED
        container.finish_time = datetime.now()
        container.exit_code = exit_code
        container.diagnostics = diagnostics
        
        # 释放资源
        node = self.nodes.get(container.node_id)
        if node:
            node.available_resource = node.available_resource + container.resource
            node.used_resource = node.used_resource - container.resource
            node.containers.remove(container)
        
        # 检查应用是否完成
        application = self.applications.get(container.application_id)
        if application:
            completed_containers = sum(1 for c in application.containers 
                                     if c.state in [ContainerState.COMPLETE, ContainerState.FAILED])
            if completed_containers == len(application.containers):
                application.state = ApplicationState.FINISHED
                application.finish_time = datetime.now()
                application.progress = 1.0
        
        print(f"容器完成: {container_id} (退出码: {exit_code})")
        return True
    
    def kill_application(self, application_id: str) -> bool:
        """
        杀死应用
        
        Args:
            application_id: 应用ID
            
        Returns:
            bool: 杀死是否成功
        """
        application = self.applications.get(application_id)
        if not application:
            return False
        
        # 杀死所有容器
        for container in application.containers:
            if container.state == ContainerState.RUNNING:
                self.complete_container(container.container_id, exit_code=-1, 
                                      diagnostics="Application killed")
        
        application.state = ApplicationState.KILLED
        application.finish_time = datetime.now()
        
        print(f"应用已杀死: {application_id}")
        return True
    
    def start_scheduler(self):
        """启动调度器"""
        self.running = True
        self.scheduler_thread = threading.Thread(target=self._scheduler_loop)
        self.scheduler_thread.start()
        print("调度器已启动")
    
    def stop_scheduler(self):
        """停止调度器"""
        self.running = False
        if self.scheduler_thread:
            self.scheduler_thread.join()
        print("调度器已停止")
    
    def _scheduler_loop(self):
        """调度器主循环"""
        while self.running:
            try:
                # 获取待调度的应用
                application_id = self.application_queue.get(timeout=1)
                application = self.applications.get(application_id)
                
                if application and application.state == ApplicationState.SUBMITTED:
                    # 接受应用
                    application.state = ApplicationState.ACCEPTED
                    
                    # 查找可用节点
                    available_nodes = [node for node in self.nodes.values() 
                                     if node.available_resource.can_satisfy(application.resource_request)]
                    
                    if available_nodes:
                        # 调度资源
                        selected_node = self.scheduler.schedule_application(application, available_nodes)
                        if selected_node:
                            # 分配容器
                            container = self.allocate_container(application_id, selected_node)
                            if container:
                                # 启动容器
                                self.start_container(container.container_id)
                                
                                # 模拟容器执行
                                threading.Thread(target=self._simulate_container_execution, 
                                               args=(container.container_id,)).start()
                    else:
                        # 没有可用资源,重新排队
                        self.application_queue.put(application_id)
                        time.sleep(1)
                        
            except queue.Empty:
                continue
            except Exception as e:
                print(f"调度器错误: {e}")
    
    def _simulate_container_execution(self, container_id: str):
        """模拟容器执行"""
        # 模拟容器运行时间(5-15秒)
        import random
        execution_time = random.randint(5, 15)
        time.sleep(execution_time)
        
        # 模拟成功完成(90%概率)
        exit_code = 0 if random.random() < 0.9 else 1
        self.complete_container(container_id, exit_code)
    
    def get_cluster_metrics(self) -> Dict[str, Any]:
        """获取集群指标"""
        total_memory = sum(node.total_resource.memory_mb for node in self.nodes.values())
        total_vcores = sum(node.total_resource.vcores for node in self.nodes.values())
        used_memory = sum(node.used_resource.memory_mb for node in self.nodes.values())
        used_vcores = sum(node.used_resource.vcores for node in self.nodes.values())
        
        running_apps = sum(1 for app in self.applications.values() 
                          if app.state == ApplicationState.RUNNING)
        completed_apps = sum(1 for app in self.applications.values() 
                           if app.state == ApplicationState.FINISHED)
        failed_apps = sum(1 for app in self.applications.values() 
                         if app.state == ApplicationState.FAILED)
        
        return {
            'cluster_id': 'yarn-cluster-001',
            'total_nodes': len(self.nodes),
            'active_nodes': len([n for n in self.nodes.values() 
                               if (datetime.now() - n.last_heartbeat).seconds < 60]),
            'total_memory_mb': total_memory,
            'used_memory_mb': used_memory,
            'available_memory_mb': total_memory - used_memory,
            'memory_utilization': used_memory / total_memory if total_memory > 0 else 0,
            'total_vcores': total_vcores,
            'used_vcores': used_vcores,
            'available_vcores': total_vcores - used_vcores,
            'vcores_utilization': used_vcores / total_vcores if total_vcores > 0 else 0,
            'total_applications': len(self.applications),
            'running_applications': running_apps,
            'completed_applications': completed_apps,
            'failed_applications': failed_apps,
            'total_containers': len(self.containers),
            'running_containers': sum(1 for c in self.containers.values() 
                                    if c.state == ContainerState.RUNNING)
        }
    
    def get_application_info(self, application_id: str) -> Optional[Dict[str, Any]]:
        """获取应用信息"""
        application = self.applications.get(application_id)
        if not application:
            return None
        
        return {
            'application_id': application.application_id,
            'application_name': application.application_name,
            'application_type': application.application_type,
            'user': application.user,
            'queue': application.queue,
            'state': application.state.value,
            'progress': application.progress,
            'submit_time': application.submit_time.isoformat(),
            'start_time': application.start_time.isoformat() if application.start_time else None,
            'finish_time': application.finish_time.isoformat() if application.finish_time else None,
            'resource_request': {
                'memory_mb': application.resource_request.memory_mb,
                'vcores': application.resource_request.vcores
            },
            'containers': [
                {
                    'container_id': c.container_id,
                    'node_id': c.node_id,
                    'state': c.state.value,
                    'resource': {
                        'memory_mb': c.resource.memory_mb,
                        'vcores': c.resource.vcores
                    }
                }
                for c in application.containers
            ]
        }

# 使用示例
if __name__ == "__main__":
    # 创建YARN资源管理器
    yarn_rm = YARNResourceManager(scheduler_type="fair")
    
    # 注册节点
    yarn_rm.register_node("node1", "worker1.example.com", 8192, 4)
    yarn_rm.register_node("node2", "worker2.example.com", 8192, 4)
    yarn_rm.register_node("node3", "worker3.example.com", 16384, 8)
    
    # 启动调度器
    yarn_rm.start_scheduler()
    
    # 提交应用
    app1_id = yarn_rm.submit_application(
        "WordCount Job", "MapReduce", "user1", "default", 2048, 1
    )
    
    app2_id = yarn_rm.submit_application(
        "Data Processing", "Spark", "user2", "production", 4096, 2
    )
    
    app3_id = yarn_rm.submit_application(
        "ML Training", "TensorFlow", "user3", "development", 8192, 4
    )
    
    # 等待一段时间让应用运行
    time.sleep(10)
    
    # 获取集群指标
    metrics = yarn_rm.get_cluster_metrics()
    print("\n=== 集群指标 ===")
    print(f"总节点数: {metrics['total_nodes']}")
    print(f"活跃节点数: {metrics['active_nodes']}")
    print(f"内存使用率: {metrics['memory_utilization']:.2%}")
    print(f"CPU使用率: {metrics['vcores_utilization']:.2%}")
    print(f"运行中应用: {metrics['running_applications']}")
    print(f"运行中容器: {metrics['running_containers']}")
    
    # 获取应用信息
    print("\n=== 应用信息 ===")
    for app_id in [app1_id, app2_id, app3_id]:
        app_info = yarn_rm.get_application_info(app_id)
        if app_info:
            print(f"应用 {app_info['application_name']} ({app_id}):")
            print(f"  状态: {app_info['state']}")
            print(f"  进度: {app_info['progress']:.2%}")
            print(f"  容器数: {len(app_info['containers'])}")
    
    # 等待应用完成
    time.sleep(20)
    
    # 停止调度器
    yarn_rm.stop_scheduler()
    
    # 最终状态
    final_metrics = yarn_rm.get_cluster_metrics()
    print("\n=== 最终状态 ===")
    print(f"完成应用数: {final_metrics['completed_applications']}")
    print(f"失败应用数: {final_metrics['failed_applications']}")

1.4 Hadoop生态系统

1.4.1 核心组件

监控管理 协调服务 数据传输 数据处理 数据存储 Hadoop Core Ambari
集群管理 Ranger
安全管理 Atlas
数据治理 Zookeeper
协调服务 Oozie
工作流调度 Airflow
任务调度 Sqoop
数据导入导出 Flume
日志收集 Kafka
消息队列 NiFi
数据流 Hive
数据仓库 Pig
数据流语言 Spark
内存计算 Flink
流处理 Storm
实时计算 HBase
NoSQL数据库 Kudu
列式存储 Cassandra
分布式数据库 HDFS
分布式文件系统 YARN
资源管理器 MapReduce
计算框架

1.4.2 生态系统组件详解

数据存储层

HDFS(Hadoop Distributed File System)

  • 功能:分布式文件系统,提供高可靠性的数据存储
  • 特点:高容错性、高吞吐量、适合大文件存储
  • 使用场景:大数据存储、数据备份、数据归档

HBase

  • 功能:分布式NoSQL数据库,基于HDFS构建
  • 特点:实时读写、列式存储、自动分片
  • 使用场景:实时查询、时序数据、用户画像
数据处理层

MapReduce

  • 功能:分布式计算框架,批处理计算
  • 特点:容错性强、编程模型简单
  • 使用场景:ETL处理、数据清洗、批量计算

Spark

  • 功能:内存计算框架,支持批处理和流处理
  • 特点:高性能、易用性、丰富的API
  • 使用场景:机器学习、图计算、实时分析

Hive

  • 功能:数据仓库软件,提供SQL查询接口
  • 特点:SQL兼容、元数据管理、查询优化
  • 使用场景:数据分析、报表生成、OLAP查询
数据传输层

Kafka

  • 功能:分布式消息队列,高吞吐量数据流
  • 特点:高性能、持久化、分区机制
  • 使用场景:日志收集、实时数据流、事件驱动

Flume

  • 功能:日志收集系统,可靠的数据传输
  • 特点:可靠性、可扩展性、配置灵活
  • 使用场景:日志收集、数据导入、实时传输
资源管理层

YARN(Yet Another Resource Negotiator)

  • 功能:集群资源管理器,统一资源调度
  • 特点:多租户、资源隔离、高可用
  • 使用场景:资源调度、多框架支持、集群管理
协调服务层

Zookeeper

  • 功能:分布式协调服务,配置管理
  • 特点:一致性、可靠性、高性能
  • 使用场景:配置管理、服务发现、分布式锁

1.4.3 技术选型指南

python 复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Hadoop生态系统技术选型指南
"""

from typing import Dict, List, Any
from enum import Enum

class DataType(Enum):
    """数据类型"""
    STRUCTURED = "structured"
    SEMI_STRUCTURED = "semi_structured"
    UNSTRUCTURED = "unstructured"

class ProcessingType(Enum):
    """处理类型"""
    BATCH = "batch"
    STREAM = "stream"
    INTERACTIVE = "interactive"
    REAL_TIME = "real_time"

class ScaleLevel(Enum):
    """规模级别"""
    SMALL = "small"  # < 1TB
    MEDIUM = "medium"  # 1TB - 100TB
    LARGE = "large"  # 100TB - 1PB
    VERY_LARGE = "very_large"  # > 1PB

class TechnologySelector:
    """技术选型器"""
    
    def __init__(self):
        self.recommendations = {
            'storage': {
                'structured': {
                    'small': ['MySQL', 'PostgreSQL'],
                    'medium': ['HBase', 'Cassandra'],
                    'large': ['HDFS + Parquet', 'HBase'],
                    'very_large': ['HDFS + ORC', 'Kudu']
                },
                'semi_structured': {
                    'small': ['MongoDB', 'Elasticsearch'],
                    'medium': ['HDFS + JSON', 'HBase'],
                    'large': ['HDFS + Avro', 'HBase'],
                    'very_large': ['HDFS + Parquet', 'Kudu']
                },
                'unstructured': {
                    'small': ['Local FileSystem', 'S3'],
                    'medium': ['HDFS', 'S3'],
                    'large': ['HDFS', 'Object Storage'],
                    'very_large': ['HDFS', 'Distributed Object Storage']
                }
            },
            'processing': {
                'batch': {
                    'small': ['Pandas', 'Local Processing'],
                    'medium': ['Spark', 'MapReduce'],
                    'large': ['Spark', 'MapReduce'],
                    'very_large': ['Spark', 'Flink Batch']
                },
                'stream': {
                    'small': ['Kafka Streams', 'Storm'],
                    'medium': ['Spark Streaming', 'Flink'],
                    'large': ['Flink', 'Spark Streaming'],
                    'very_large': ['Flink', 'Storm']
                },
                'interactive': {
                    'small': ['Jupyter', 'R Studio'],
                    'medium': ['Spark SQL', 'Presto'],
                    'large': ['Spark SQL', 'Impala'],
                    'very_large': ['Presto', 'Drill']
                }
            }
        }
    
    def recommend_storage(self, data_type: DataType, scale: ScaleLevel) -> List[str]:
        """推荐存储技术"""
        return self.recommendations['storage'][data_type.value][scale.value]
    
    def recommend_processing(self, processing_type: ProcessingType, scale: ScaleLevel) -> List[str]:
        """推荐处理技术"""
        return self.recommendations['processing'][processing_type.value][scale.value]
    
    def get_architecture_recommendation(self, requirements: Dict[str, Any]) -> Dict[str, Any]:
        """获取架构推荐"""
        data_volume = requirements.get('data_volume', 'small')
        data_types = requirements.get('data_types', ['structured'])
        processing_types = requirements.get('processing_types', ['batch'])
        latency_requirement = requirements.get('latency', 'normal')  # low, normal, high
        
        scale = ScaleLevel(data_volume)
        
        recommendations = {
            'storage_layer': {},
            'processing_layer': {},
            'architecture_pattern': '',
            'key_considerations': []
        }
        
        # 存储层推荐
        for data_type in data_types:
            dt = DataType(data_type)
            recommendations['storage_layer'][data_type] = self.recommend_storage(dt, scale)
        
        # 处理层推荐
        for processing_type in processing_types:
            pt = ProcessingType(processing_type)
            recommendations['processing_layer'][processing_type] = self.recommend_processing(pt, scale)
        
        # 架构模式推荐
        if 'stream' in processing_types and latency_requirement == 'low':
            recommendations['architecture_pattern'] = 'Lambda Architecture'
        elif 'stream' in processing_types:
            recommendations['architecture_pattern'] = 'Kappa Architecture'
        else:
            recommendations['architecture_pattern'] = 'Batch Architecture'
        
        # 关键考虑因素
        if scale in [ScaleLevel.LARGE, ScaleLevel.VERY_LARGE]:
            recommendations['key_considerations'].extend([
                '考虑数据分区策略',
                '实施数据压缩',
                '设计容错机制'
            ])
        
        if 'stream' in processing_types:
            recommendations['key_considerations'].extend([
                '设计背压机制',
                '考虑数据一致性',
                '实施检查点机制'
            ])
        
        return recommendations

# 使用示例
if __name__ == "__main__":
    selector = TechnologySelector()
    
    # 示例需求
    requirements = {
        'data_volume': 'large',
        'data_types': ['structured', 'semi_structured'],
        'processing_types': ['batch', 'stream'],
        'latency': 'low'
    }
    
    recommendations = selector.get_architecture_recommendation(requirements)
    
    print("=== 技术选型推荐 ===")
    print(f"架构模式: {recommendations['architecture_pattern']}")
    print("\n存储层推荐:")
    for data_type, technologies in recommendations['storage_layer'].items():
        print(f"  {data_type}: {', '.join(technologies)}")
    
    print("\n处理层推荐:")
    for processing_type, technologies in recommendations['processing_layer'].items():
        print(f"  {processing_type}: {', '.join(technologies)}")
    
    print("\n关键考虑因素:")
    for consideration in recommendations['key_considerations']:
        print(f"  - {consideration}")

1.5 Hadoop应用场景

1.5.1 典型应用场景

1. 大数据分析
  • 日志分析:网站访问日志、应用日志、系统日志
  • 用户行为分析:点击流分析、用户画像、推荐系统
  • 业务智能:销售分析、财务报表、运营指标
2. 数据仓库
  • ETL处理:数据抽取、转换、加载
  • 数据集市:部门级数据仓库
  • OLAP分析:多维数据分析
3. 机器学习
  • 特征工程:数据预处理、特征提取
  • 模型训练:大规模机器学习算法
  • 模型评估:交叉验证、性能评估
4. 实时处理
  • 流数据处理:实时监控、告警系统
  • 事件处理:复杂事件处理(CEP)
  • 实时推荐:个性化推荐系统

1.5.2 行业应用案例

电商行业
markdown 复制代码
# 电商大数据应用架构

## 数据源
- 用户行为数据(点击、浏览、购买)
- 商品数据(价格、库存、属性)
- 交易数据(订单、支付、物流)
- 外部数据(天气、节假日、竞品)

## 技术栈
- **数据收集**: Flume, Kafka
- **数据存储**: HDFS, HBase
- **数据处理**: Spark, Hive
- **实时计算**: Spark Streaming, Flink
- **数据服务**: Presto, Kylin

## 应用场景
- 实时推荐系统
- 用户画像分析
- 库存优化
- 价格策略
- 反欺诈检测
金融行业
markdown 复制代码
# 金融大数据应用架构

## 数据源
- 交易数据(股票、债券、外汇)
- 客户数据(账户、资产、行为)
- 市场数据(行情、新闻、研报)
- 风险数据(信用、市场、操作)

## 技术栈
- **数据收集**: Kafka, Flume
- **数据存储**: HDFS, HBase, Kudu
- **数据处理**: Spark, Flink
- **实时计算**: Storm, Spark Streaming
- **数据分析**: Hive, Impala

## 应用场景
- 风险管理
- 反洗钱监控
- 算法交易
- 客户分析
- 监管报告
电信行业
markdown 复制代码
# 电信大数据应用架构

## 数据源
- 通话详单(CDR)
- 网络性能数据
- 客户服务数据
- 位置数据(LBS)

## 技术栈
- **数据收集**: Flume, Sqoop
- **数据存储**: HDFS, HBase
- **数据处理**: MapReduce, Spark
- **实时分析**: Storm, Flink
- **数据挖掘**: Mahout, MLlib

## 应用场景
- 网络优化
- 客户流失预测
- 精准营销
- 欺诈检测
- 位置服务

1.6 Hadoop优势与挑战

1.6.1 主要优势

1. 成本效益
  • 硬件成本低:使用商用服务器,成本远低于专用设备
  • 软件开源:无许可费用,降低总体拥有成本
  • 运维成本:自动化程度高,减少人工干预
2. 可扩展性
  • 水平扩展:通过增加节点线性提升性能
  • 存储扩展:支持PB级数据存储
  • 计算扩展:支持数千节点并行计算
3. 可靠性
  • 数据冗余:多副本机制保证数据安全
  • 故障恢复:自动检测和恢复故障节点
  • 无单点故障:分布式架构避免单点故障
4. 灵活性
  • 数据格式:支持结构化、半结构化、非结构化数据
  • 处理模式:支持批处理、流处理、交互式查询
  • 编程语言:支持Java、Python、Scala、R等多种语言

1.6.2 主要挑战

1. 复杂性
  • 架构复杂:涉及多个组件,学习曲线陡峭
  • 运维复杂:需要专业的运维团队
  • 调优困难:性能调优需要深入理解
2. 实时性
  • 批处理延迟:MapReduce不适合实时处理
  • 启动开销:作业启动时间较长
  • 数据延迟:从数据产生到结果输出有延迟
3. 小文件问题
  • NameNode压力:大量小文件增加NameNode负担
  • 存储效率:小文件存储效率低
  • 处理性能:小文件处理性能差
4. 安全性
  • 认证授权:需要额外的安全框架
  • 数据加密:静态和传输数据加密
  • 审计日志:完整的操作审计

1.6.3 发展趋势

1. 云原生化
  • 容器化部署:Docker、Kubernetes支持
  • 云服务集成:与AWS、Azure、GCP集成
  • 弹性伸缩:根据负载自动调整资源
2. 实时化
  • 流批一体:统一的流批处理框架
  • 低延迟:毫秒级数据处理
  • 事件驱动:基于事件的架构模式
3. 智能化
  • 自动调优:基于机器学习的性能优化
  • 智能运维:预测性维护和故障诊断
  • 自适应:根据工作负载自动调整配置
4. 生态整合
  • 多云支持:跨云平台数据处理
  • API标准化:统一的数据访问接口
  • 工具集成:与BI、ML工具深度集成

1.7 学习路径建议

1.7.1 基础阶段(1-2个月)

理论学习
  • 分布式系统基础:CAP理论、一致性、分区容错
  • Hadoop核心概念:HDFS、MapReduce、YARN
  • Linux基础:命令行操作、shell脚本
实践项目
  • 环境搭建:单机伪分布式集群
  • 基础操作:HDFS文件操作、MapReduce作业
  • 简单应用:WordCount、日志分析

1.7.2 进阶阶段(2-3个月)

深入学习
  • 集群部署:多节点集群搭建和配置
  • 性能调优:参数调优、资源配置
  • 监控运维:集群监控、故障处理
生态系统
  • Hive:数据仓库和SQL查询
  • HBase:NoSQL数据库操作
  • Spark:内存计算和机器学习

1.7.3 高级阶段(3-6个月)

架构设计
  • 方案设计:根据业务需求设计大数据架构
  • 技术选型:选择合适的技术栈
  • 容量规划:集群规模和资源规划
项目实战
  • 完整项目:端到端的大数据项目
  • 性能优化:深度性能调优
  • 运维自动化:自动化部署和监控

本章小结

本章介绍了Hadoop的基本概念、核心组件、生态系统和应用场景。Hadoop作为大数据处理的基础平台,提供了可靠、可扩展、成本效益的解决方案。通过学习HDFS、MapReduce和YARN三大核心组件,以及丰富的生态系统工具,可以构建完整的大数据处理平台。

在实际应用中,需要根据具体的业务需求和技术约束,选择合适的技术栈和架构模式。同时,要充分考虑Hadoop的优势和挑战,制定合理的学习和实施计划。

下一章将详细介绍Hadoop的安装和配置,帮助读者搭建自己的Hadoop开发环境。

相关推荐
鸿儒之观3 小时前
hadoop 框架 jar下载
大数据·hadoop·jar
2302_799525743 小时前
【Hadoop】Hadoop集群安装中出现的问题
linux·hadoop
IT研究室5 小时前
大数据毕业设计选题推荐-基于大数据的分化型甲状腺癌复发数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
计算机编程小央姐5 小时前
数据安全成焦点:基于Hadoop+Spark的信用卡诈骗分析系统实战教程
大数据·hadoop·python·spark·毕业设计·课程设计·dash
BYSJMG7 小时前
大数据毕业设计推荐:基于Spark的零售时尚精品店销售数据分析系统【Hadoop+python+spark】
大数据·hadoop·python·spark·django·课程设计
项目題供诗1 天前
Hadoop(七)
大数据·hadoop·分布式
小蒜学长1 天前
基于Hadoop的网约车公司数据分析系统设计(代码+数据库+LW)
java·大数据·数据库·hadoop·spring boot·后端
计算机毕设残哥1 天前
数据量太大处理不了?Hadoop+Spark轻松解决海洋气象大数据分析难题
大数据·hadoop·python·数据分析·spark·django·dash
Lx3521 天前
Hadoop数据处理流水线设计:提高作业执行效率
大数据·hadoop