使用MS-SWIF框架对大模型进行SFT微调

MS-SWIFT训练框架
Qwen3最佳实践

GPU资源:Tesla V100S x4(32G x 4)

底座模型:Qwen3-1.7B

SFT数据集:
alpaca-gpt4-data-en
alpaca-gpt4-data-zh
自我认知微调数据集

训练

export CUDA_VISIBLE_DEVICES=0,1,2,3

swift sft

--model Qwen/Qwen3-1.7B

--train_type lora

--dataset 'AI-ModelScope/alpaca-gpt4-data-zh#500'

'AI-ModelScope/alpaca-gpt4-data-en#500'

'swift/self-cognition#500'

--torch_dtype bfloat16

--num_train_epochs 1

--per_device_train_batch_size 1

--per_device_eval_batch_size 1

--learning_rate 1e-4

--lora_rank 8

--lora_alpha 32

--target_modules all-linear

--gradient_accumulation_steps 16

--eval_steps 50

--save_steps 50

--save_total_limit 2

--logging_steps 5

--max_length 2048

--output_dir output

--system 'You are a helpful assistant.'

--warmup_ratio 0.05

--dataloader_num_workers 4

--model_author swift

--model_name swift-robot

推理

swift infer

--adapters output/vx-xxx/checkpoint-xxx

--stream true

--temperature 0

--max_new_tokens 2048

swift infer

--adapters /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94

--stream true

--temperature 0

--max_new_tokens 2048

merge-lora并使用vLLM进行推理加速

swift infer

--adapters output/vx-xxx/checkpoint-xxx

--stream true

--merge_lora true

--infer_backend vllm

--max_model_len 8192

--temperature 0

--max_new_tokens 2048

swift infer

--adapters /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94

--stream true

--merge_lora true

--infer_backend vllm

--max_model_len 8192

--temperature 0

--max_new_tokens 2048

报错:ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Tesla V100S-PCIE-32GB GPU has compute capability 7.0. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half.

原因:用 Bfloat16(Brain Floating Point 16) 数据类型来节省显存、加速训练,需要GPU 计算能力 ≥ 8.0

使用SGlang推理

SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94-merged --reasoning-parser qwen3

报错:RuntimeError: SGLang only supports sm75 and above.

原因:SGLang 只支持计算能力(Compute Capability)为 sm_75 及以上的 GPU,你的 GPU 的计算能力低于 sm_75,因此无法运行

模型发布

swift export

--adapters /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94

--push_to_hub true

--hub_model_id 'lzhawesome/my-lora-model-Qwen3-1.7B'

--hub_token 'xxxxx'

--use_hf false

相关推荐
慧星云3 小时前
双节模型创作大赛开赛啦:和魔多一起欢庆中秋国庆
人工智能·云计算·aigc
爆改模型3 小时前
【ICCV2025】计算机视觉|即插即用|ESC:超越Transformer!即插即用ESC模块,显著提升图像超分辨率性能!
人工智能·计算机视觉·transformer
带娃的IT创业者3 小时前
《AI大模型应知应会100篇》第69篇:大模型辅助的数据分析应用开发
人工智能·数据挖掘·数据分析
小胖墩有点瘦4 小时前
【基于yolo和web的垃圾分类系统】
人工智能·python·yolo·flask·毕业设计·课程设计·垃圾分类
bylander4 小时前
【论文阅读】自我进化的AI智能体综述
人工智能·大模型·智能体
却道天凉_好个秋4 小时前
计算机视觉(十二):人工智能、机器学习与深度学习
人工智能·深度学习·机器学习·计算机视觉
小关会打代码4 小时前
自然语言处理之第一课语言转换方法
人工智能·自然语言处理
wenzhangli74 小时前
OneCode 可视化揭秘系列(三):AI MCP驱动的智能工作流逻辑编排
人工智能
聚客AI4 小时前
⭐精准率暴跌50%?RAG开发者必避的十大认知误区
人工智能·llm·agent