使用MS-SWIF框架对大模型进行SFT微调

MS-SWIFT训练框架
Qwen3最佳实践

GPU资源:Tesla V100S x4(32G x 4)

底座模型:Qwen3-1.7B

SFT数据集:
alpaca-gpt4-data-en
alpaca-gpt4-data-zh
自我认知微调数据集

训练

export CUDA_VISIBLE_DEVICES=0,1,2,3

swift sft

--model Qwen/Qwen3-1.7B

--train_type lora

--dataset 'AI-ModelScope/alpaca-gpt4-data-zh#500'

'AI-ModelScope/alpaca-gpt4-data-en#500'

'swift/self-cognition#500'

--torch_dtype bfloat16

--num_train_epochs 1

--per_device_train_batch_size 1

--per_device_eval_batch_size 1

--learning_rate 1e-4

--lora_rank 8

--lora_alpha 32

--target_modules all-linear

--gradient_accumulation_steps 16

--eval_steps 50

--save_steps 50

--save_total_limit 2

--logging_steps 5

--max_length 2048

--output_dir output

--system 'You are a helpful assistant.'

--warmup_ratio 0.05

--dataloader_num_workers 4

--model_author swift

--model_name swift-robot

推理

swift infer

--adapters output/vx-xxx/checkpoint-xxx

--stream true

--temperature 0

--max_new_tokens 2048

swift infer

--adapters /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94

--stream true

--temperature 0

--max_new_tokens 2048

merge-lora并使用vLLM进行推理加速

swift infer

--adapters output/vx-xxx/checkpoint-xxx

--stream true

--merge_lora true

--infer_backend vllm

--max_model_len 8192

--temperature 0

--max_new_tokens 2048

swift infer

--adapters /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94

--stream true

--merge_lora true

--infer_backend vllm

--max_model_len 8192

--temperature 0

--max_new_tokens 2048

报错:ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Tesla V100S-PCIE-32GB GPU has compute capability 7.0. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half.

原因:用 Bfloat16(Brain Floating Point 16) 数据类型来节省显存、加速训练,需要GPU 计算能力 ≥ 8.0

使用SGlang推理

SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94-merged --reasoning-parser qwen3

报错:RuntimeError: SGLang only supports sm75 and above.

原因:SGLang 只支持计算能力(Compute Capability)为 sm_75 及以上的 GPU,你的 GPU 的计算能力低于 sm_75,因此无法运行

模型发布

swift export

--adapters /workspace/codes/oss/ms-swift/output/v3-20250905-012245/checkpoint-94

--push_to_hub true

--hub_model_id 'lzhawesome/my-lora-model-Qwen3-1.7B'

--hub_token 'xxxxx'

--use_hf false

相关推荐
数科云5 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区5 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南6 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu6 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现6 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_6 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z6 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派7 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor7 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
努力学习的小洋7 小时前
Python训练打卡Day5离散特征的处理-独热编码
人工智能·python·机器学习