概率与决策 - 模拟程序让你在选择中取胜

前言

在人生中我们会处处面临抉择,是选择A还是选择B呢。选对了可能皆大欢喜,选错了可能就是一个重要的转折点。 在刷知乎的过程中,经常会有类似的问题。看似荒诞的背后,却蕴藏着无限的哲学。

  1. 每毫秒给你1个亿,代价是你每秒被动触发一次1亿分之一的死亡率,你愿意吗?
  2. "100%概率获得200万"和"99%概率获得2个亿",你选哪个?

作为程序员,看着这种概率与决策,有时候常在想,我怎么做决策我的胜率概率最大,能不能用程序来模拟一下。我选择A赢的概率,我选择B赢的概率呢?

当然,必定是可以的,程序天然非常容易处理这些大数据,循环等问题,话不多说,直接看效果吧。

死亡概率模拟器

核心算法采用了"几何分布逆变换采样"

  • O(1)时间复杂度,相比传统蒙特卡洛方法性能提升显著
  • 数学准确性:基于几何分布的期望值 E[X] = 1/p
  • 边界保护:处理 log(0) 等数学异常
js 复制代码
calculateDeathTime() {
  const p = this.selectedProbability.value;
  const u = Math.random();
  const u_safe = Math.max(u, 1e-10); // 避免log(0)
  
  // 几何分布公式:X = ceil(log(U) / log(1-p))
  const deathTime = Math.ceil(Math.log(u_safe) / Math.log(1 - p));
  return Math.max(1, deathTime);
}

风险抉择抽奖

采用了预计算 + 进度动画分离。

  • 计算与渲染分离:避免10000次抽奖时的性能问题
  • 固定时长体验:无论多少次抽奖,用户等待时间可控
  • 平滑进度显示:50ms更新间隔保证流畅动画
js 复制代码
async startLottery() {
  // 步骤1:预先快速计算所有结果(无延迟)
  for (let i = 0; i < this.selectedTimes; i++) {
    const result = this.performSingleLottery();
    this.results.push(result);
  }

  // 步骤2:根据次数设置固定动画时长
  let animationDuration = 0;
  if (this.selectedTimes === 1) animationDuration = 0;      // 立即
  else if (this.selectedTimes === 10) animationDuration = 500;    // 0.5s
  else if (this.selectedTimes === 100) animationDuration = 1000;   // 1s
  else if (this.selectedTimes === 1000) animationDuration = 1500;  // 1.5s
  else if (this.selectedTimes === 10000) animationDuration = 2000; // 2s

  // 步骤3:播放进度动画(仅更新显示)
  const updateInterval = 50; // 每50ms更新一次
  const totalSteps = animationDuration / updateInterval;
  
  for (let step = 1; step <= totalSteps; step++) {
    this.currentRound = Math.floor((step / totalSteps) * this.selectedTimes);
    await this.sleep(updateInterval);
  }
}

同时采用了真随机模拟 Math.random() 模拟概率,大数定律验证,次数越多越接近理论值

js 复制代码
performSingleLottery() {
  const random = Math.random(); // [0, 1)
  if (random < 0.99) {
    return { win: true, amount: 200000000 }; // 99%概率:2亿
  } else {
    return { win: false, amount: 0 };         // 1%概率:0元
  }
}

最后

其实最后发觉,概率学到最后就是数学期望,一个人选择可能是随机,但100人、1w人、10w人选择就是必然的概率了。

一个人选择失败对整体影响有限,但对于他自身而言,可能是灾难性的,这也就是一个人在就是整个时代的一粒沙尘,对整个时代影响微乎其微。

但通过代码的计算我们也可以看出,一个人微乎其微,但如果你在你的前面加一个权重,那可能就不一样了,所以大家行动起来吧,让自己变得更强,那样,在选择中,你取胜的概率就会更大了,谢谢大家。

相关推荐
被巨款砸中2 小时前
一篇文章讲清Prompt、Agent、MCP、Function Calling
前端·vue.js·人工智能·web
sophie旭2 小时前
一道面试题,开始性能优化之旅(1)-- beforeFetch
前端·性能优化
Cache技术分享3 小时前
204. Java 异常 - Error 类:表示 Java 虚拟机中的严重错误
前端·后端
uhakadotcom3 小时前
execjs有哪些常用的api,如何逆向分析网站的加签机制
前端·javascript·面试
ObjectX前端实验室3 小时前
【图形编辑器架构】:无限画布标尺与网格系统实现解析
前端·canvas·图形学
你的电影很有趣3 小时前
lesson71:Node.js与npm基础全攻略:2025年最新特性与实战指南
前端·npm·node.js
闲蛋小超人笑嘻嘻3 小时前
find数组方法详解||Vue3 + uni-app + Wot Design(wd-picker)使用自定义插槽内容写一个下拉选择器
前端·javascript·uni-app
小牛itbull4 小时前
初始化electron项目运行后报错 electron uninstall 解决方法
前端·javascript·electron
闲蛋小超人笑嘻嘻4 小时前
前端面试十四之webpack和vite有什么区别
前端·webpack·node.js