一、fasync_helper
异步通知注册和取消函数
c
struct fasync_struct {
int magic;
int fa_fd;
struct fasync_struct *fa_next; /* singly linked list */
struct file *fa_file;
};
int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
{
struct fasync_struct *fa, **fp;
struct fasync_struct *new = NULL;
int result = 0;
if (on) {
new = kmem_cache_alloc(fasync_cache, SLAB_KERNEL);
if (!new)
return -ENOMEM;
}
write_lock_irq(&fasync_lock);
for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
if (fa->fa_file == filp) {
if(on) {
fa->fa_fd = fd;
kmem_cache_free(fasync_cache, new);
} else {
*fp = fa->fa_next;
kmem_cache_free(fasync_cache, fa);
result = 1;
}
goto out;
}
}
if (on) {
new->magic = FASYNC_MAGIC;
new->fa_file = filp;
new->fa_fd = fd;
new->fa_next = *fapp;
*fapp = new;
result = 1;
}
out:
write_unlock_irq(&fasync_lock);
return result;
}
1. 函数原型和参数
c
int fasync_helper(int fd, struct file *filp, int on, struct fasync_struct **fapp)
参数:
fd
:文件描述符filp
:文件结构指针on
:启用或禁用异步通知(1=启用,0=禁用)fapp
:指向异步通知结构链表头指针的指针
2. 第1部分:变量声明和内存分配
c
struct fasync_struct *fa, **fp;
struct fasync_struct *new = NULL;
int result = 0;
if (on) {
new = kmem_cache_alloc(fasync_cache, SLAB_KERNEL);
if (!new)
return -ENOMEM;
}
分析:
- 如果启用异步通知(
on = 1
),预先分配一个新的fasync_struct
- 使用
kmem_cache_alloc
从专用的 slab 缓存分配内存,提高性能 - 如果内存分配失败,返回
-ENOMEM
3. 第2部分:加锁和链表遍历
c
write_lock_irq(&fasync_lock);
for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
分析:
write_lock_irq(&fasync_lock)
:获取写锁并禁用中断,保护全局的异步通知链表- 遍历异步通知链表,查找是否已经为该文件注册过异步通知
4. 第3部分:找到现有条目的处理
c
if (fa->fa_file == filp) {
if(on) {
fa->fa_fd = fd;
kmem_cache_free(fasync_cache, new);
} else {
*fp = fa->fa_next;
kmem_cache_free(fasync_cache, fa);
result = 1;
}
goto out;
}
4.1. 情况1:启用通知,但条目已存在
c
if(on) {
fa->fa_fd = fd; // 更新文件描述符
kmem_cache_free(fasync_cache, new); // 释放预分配的内存
}
- 只需更新现有的文件描述符
- 释放之前预分配但未使用的内存
4.2. 情况2:禁用通知,且条目存在
c
} else {
*fp = fa->fa_next; // 从链表中移除
kmem_cache_free(fasync_cache, fa); // 释放条目内存
result = 1; // 返回成功
}
- 将当前条目从链表中移除
- 释放对应的内存
- 返回 1 表示成功移除
5. 第4部分:添加新条目
c
if (on) {
new->magic = FASYNC_MAGIC;
new->fa_file = filp;
new->fa_fd = fd;
new->fa_next = *fapp;
*fapp = new;
result = 1;
}
分析:
- 只有启用通知且条目不存在时才执行
- 初始化新条目:
magic
:魔术字,用于调试和验证fa_file
:关联的文件结构fa_fd
:文件描述符fa_next
:指向链表下一个条目
- 将新条目插入链表头部
- 返回 1 表示成功添加
6. 第5部分:清理和返回
c
out:
write_unlock_irq(&fasync_lock);
return result;
分析:
- 释放保护锁并恢复中断
- 返回操作结果
7. 数据结构分析
7.1. fasync_struct
结构
c
struct fasync_struct {
int magic; // 魔术字 FASYNC_MAGIC
int fa_fd; // 文件描述符
struct fasync_struct *fa_next; /* 单链表 */
struct file *fa_file; // 文件结构指针
};
8.完整执行流程
是 否 是 否 是 否 是 否 开始 fasync_helper on=1? 分配新结构 不加分配 加锁遍历链表 找到filp条目? on=1? on=1? 更新fd, 释放新结构 移除条目, 释放内存 添加新条目到链表头 无操作 返回0 返回1 返回0 释放锁返回
这个函数是 Linux 异步 I/O 通知机制的基础构建块,确保了多个进程可以安全地注册和取消注册对同一文件的异步通知
二、kill_fasync
异步通知信号发送函数
c
void __kill_fasync(struct fasync_struct *fa, int sig, int band)
{
while (fa) {
struct fown_struct * fown;
if (fa->magic != FASYNC_MAGIC) {
printk(KERN_ERR "kill_fasync: bad magic number in "
"fasync_struct!\n");
return;
}
fown = &fa->fa_file->f_owner;
/* Don't send SIGURG to processes which have not set a
queued signum: SIGURG has its own default signalling
mechanism. */
if (!(sig == SIGURG && fown->signum == 0))
send_sigio(fown, fa->fa_fd, band);
fa = fa->fa_next;
}
}
void kill_fasync(struct fasync_struct **fp, int sig, int band)
{
/* First a quick test without locking: usually
* the list is empty.
*/
if (*fp) {
read_lock(&fasync_lock);
/* reread *fp after obtaining the lock */
__kill_fasync(*fp, sig, band);
read_unlock(&fasync_lock);
}
}
1. 函数概述
__kill_fasync()
:实际遍历链表并发送信号的内部函数kill_fasync()
:对外接口,处理锁保护和快速检查
2. __kill_fasync()
函数详解
c
void __kill_fasync(struct fasync_struct *fa, int sig, int band)
{
while (fa) {
struct fown_struct * fown;
// 1. 魔术字验证
if (fa->magic != FASYNC_MAGIC) {
printk(KERN_ERR "kill_fasync: bad magic number in "
"fasync_struct!\n");
return;
}
魔术字验证:
- 检查
fasync_struct
的魔术字是否匹配FASYNC_MAGIC
- 如果不匹配,打印错误信息并立即返回
c
// 2. 获取文件所有者信息
fown = &fa->fa_file->f_owner;
// 3. SIGURG 特殊处理
if (!(sig == SIGURG && fown->signum == 0))
send_sigio(fown, fa->fa_fd, band);
SIGURG 特殊逻辑:
SIGURG
用于带外数据(out-of-band data)通知- 如果信号是
SIGURG
且进程没有设置自定义信号(fown->signum == 0
),则不发送信号 - 这是因为
SIGURG
有自己默认的信号处理机制
c
// 4. 移动到下一个节点
fa = fa->fa_next;
}
}
链表遍历:
- 循环遍历整个
fasync_struct
链表 - 对每个注册的进程发送信号
3. kill_fasync()
函数详解
c
void kill_fasync(struct fasync_struct **fp, int sig, int band)
{
/* First a quick test without locking: usually
* the list is empty.
*/
if (*fp) {
read_lock(&fasync_lock);
/* reread *fp after obtaining the lock */
__kill_fasync(*fp, sig, band);
read_unlock(&fasync_lock);
}
}
3.1. 快速路径检查
c
if (*fp) {
- 在加锁前先检查链表是否为空
- 这是重要的性能优化,因为大多数情况下异步通知链表是空的
- 避免不必要的加锁操作
3.2. 锁保护
c
read_lock(&fasync_lock);
__kill_fasync(*fp, sig, band);
read_unlock(&fasync_lock);
- 使用读锁(
read_lock
)保护链表遍历 - 读锁允许多个
kill_fasync
调用并发执行,只要没有修改操作 - 在锁内重新读取
*fp
,确保获取的是最新值
4. 参数说明
4.1. 信号参数
c
int sig, int band
sig
:要发送的信号,通常是:SIGIO
:通用异步 I/O 通知SIGURG
:紧急数据通知
band
:事件类型,通常是:POLL_IN
:数据可读POLL_OUT
:数据可写POLL_PRI
:紧急数据可读
三、案例文件之scull.h
c
#ifndef _SCULL_H_
#define _SCULL_H_
#ifndef SCULL_P_NR_DEVS
#define SCULL_P_NR_DEVS 4 /* scullpipe0 through scullpipe3 */
#endif
#ifndef SCULL_P_BUFFER
#define SCULL_P_BUFFER 4000
#endif
struct scull_dev {
struct scull_qset *data;
int quantum;
int qset;
unsigned long size;
unsigned int access_key;
struct semaphore sem;
struct cdev cdev;
};
#endif /* _SCULL_H_ */
定义字符设备常量和scull_dev
结构体
四、案例文件之scullp.c
c
#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/cdev.h>
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_*_user */
#include "scull.h" /* local definitions */
struct scull_pipe {
wait_queue_head_t inq, outq; /* read and write queues */
char *buffer, *end; /* begin of buf, end of buf */
int buffersize; /* used in pointer arithmetic */
char *rp, *wp; /* where to read, where to write */
int nreaders, nwriters; /* number of openings for r/w */
struct fasync_struct *async_queue; /* asynchronous readers */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */
};
static int scull_p_nr_devs = SCULL_P_NR_DEVS; /* number of pipe devices */
int scull_p_buffer = SCULL_P_BUFFER; /* buffer size */
dev_t scull_p_devno; /* Our first device number */
module_param(scull_p_nr_devs, int, 0);
module_param(scull_p_buffer, int, 0);
static struct scull_pipe *scull_p_devices;
static int scull_p_fasync(int fd, struct file *filp, int mode);
static int spacefree(struct scull_pipe *dev);
MODULE_LICENSE("Dual BSD/GPL");
struct scull_dev *scull_devices; /* allocated in scull_init_module */
/*
* Open and close
*/
static int scull_p_open(struct inode *inode, struct file *filp)
{
struct scull_pipe *dev;
dev = container_of(inode->i_cdev, struct scull_pipe, cdev);
filp->private_data = dev;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
if (!dev->buffer) {
/* allocate the buffer */
dev->buffer = kmalloc(scull_p_buffer, GFP_KERNEL);
if (!dev->buffer) {
up(&dev->sem);
return -ENOMEM;
}
}
dev->buffersize = scull_p_buffer;
dev->end = dev->buffer + dev->buffersize;
dev->rp = dev->wp = dev->buffer; /* rd and wr from the beginning */
if (filp->f_mode & FMODE_READ)
dev->nreaders++;
if (filp->f_mode & FMODE_WRITE)
dev->nwriters++;
up(&dev->sem);
/*
* This is used by subsystems that don't want seekable
* file descriptors
*/
return nonseekable_open(inode, filp);
}
static int scull_p_release(struct inode *inode, struct file *filp)
{
struct scull_pipe *dev = filp->private_data;
/* remove this filp from the asynchronously notified filp's */
scull_p_fasync(-1, filp, 0);
down(&dev->sem);
if (filp->f_mode & FMODE_READ)
dev->nreaders--;
if (filp->f_mode & FMODE_WRITE)
dev->nwriters--;
if (dev->nreaders + dev->nwriters == 0) {
kfree(dev->buffer);
dev->buffer = NULL; /* the other fields are not checked on open */
}
up(&dev->sem);
return 0;
}
static int scull_p_fasync(int fd, struct file *filp, int mode)
{
struct scull_pipe *dev = filp->private_data;
return fasync_helper(fd, filp, mode, &dev->async_queue);
}
static int scull_getwritespace(struct scull_pipe *dev, struct file *filp)
{
while (spacefree(dev) == 0) { /* full */
DEFINE_WAIT(wait);
up(&dev->sem);
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
printk("\"%s\" writing: going to sleep\n",current->comm);
prepare_to_wait(&dev->outq, &wait, TASK_INTERRUPTIBLE);
if (spacefree(dev) == 0)
schedule();
finish_wait(&dev->outq, &wait);
if (signal_pending(current))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
}
return 0;
}
/* How much space is free? */
static int spacefree(struct scull_pipe *dev)
{
if (dev->rp == dev->wp)
return dev->buffersize - 1;
return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1;
}
static ssize_t scull_p_write(struct file *filp, const char __user *buf, size_t count,
loff_t *f_pos)
{
struct scull_pipe *dev = filp->private_data;
int result;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
/* Make sure there's space to write */
result = scull_getwritespace(dev, filp);
if (result)
return result; /* scull_getwritespace called up(&dev->sem) */
/* ok, space is there, accept something */
count = min(count, (size_t)spacefree(dev));
if (dev->wp >= dev->rp)
count = min(count, (size_t)(dev->end - dev->wp)); /* to end-of-buf */
else /* the write pointer has wrapped, fill up to rp-1 */
count = min(count, (size_t)(dev->rp - dev->wp - 1));
printk("Going to accept %li bytes to %p from %p\n", (long)count, dev->wp, buf);
if (copy_from_user(dev->wp, buf, count)) {
up (&dev->sem);
return -EFAULT;
}
dev->wp += count;
if (dev->wp == dev->end)
dev->wp = dev->buffer; /* wrapped */
up(&dev->sem);
/* finally, awake any reader */
wake_up_interruptible(&dev->inq);
if (dev->async_queue)
kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
printk("\"%s\" did write %li bytes\n",current->comm, (long)count);
return count;
}
static ssize_t scull_p_read (struct file *filp, char __user *buf, size_t count,
loff_t *f_pos)
{
struct scull_pipe *dev = filp->private_data;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
while (dev->rp == dev->wp) { /* nothing to read */
up(&dev->sem); /* release the lock */
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
printk("\"%s\" reading: going to sleep\n", current->comm);
if (wait_event_interruptible(dev->inq, (dev->rp != dev->wp)))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
/* otherwise loop, but first reacquire the lock */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
}
/* ok, data is there, return something */
if (dev->wp > dev->rp)
count = min(count, (size_t)(dev->wp - dev->rp));
else /* the write pointer has wrapped, return data up to dev->end */
count = min(count, (size_t)(dev->end - dev->rp));
if (copy_to_user(buf, dev->rp, count)) {
up (&dev->sem);
return -EFAULT;
}
dev->rp += count;
if (dev->rp == dev->end)
dev->rp = dev->buffer; /* wrapped */
up (&dev->sem);
/* finally, awake any writers and return */
wake_up_interruptible(&dev->outq);
printk("\"%s\" did read %li bytes\n",current->comm, (long)count);
return count;
}
struct file_operations scull_pipe_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = scull_p_read,
.write = scull_p_write,
.open = scull_p_open,
.release = scull_p_release,
.fasync = scull_p_fasync,
};
void scull_p_cleanup(void)
{
int i;
if (!scull_p_devices)
return; /* nothing else to release */
for (i = 0; i < scull_p_nr_devs; i++) {
cdev_del(&scull_p_devices[i].cdev);
kfree(scull_p_devices[i].buffer);
}
kfree(scull_p_devices);
unregister_chrdev_region(scull_p_devno, scull_p_nr_devs);
scull_p_devices = NULL; /* pedantic */
}
/*
* The cleanup function is used to handle initialization failures as well.
* Thefore, it must be careful to work correctly even if some of the items
* have not been initialized
*/
void scull_cleanup_module(void)
{
scull_p_cleanup();
}
/*
* Set up the char_dev structure for this device.
*/
static void scull_p_setup_cdev(struct scull_pipe *dev, int index)
{
int err, devno = scull_p_devno + index;
cdev_init(&dev->cdev, &scull_pipe_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add (&dev->cdev, devno, 1);
/* Fail gracefully if need be */
if (err)
printk(KERN_NOTICE "Error %d adding scullpipe%d", err, index);
}
int scull_p_init(dev_t firstdev)
{
int i, result;
result = alloc_chrdev_region(&firstdev, 0, scull_p_nr_devs,
"scullp");
printk(KERN_NOTICE "alloc_chrdev_region result=%d\n", result);
if (result < 0) {
printk(KERN_NOTICE "Unable to get scullp region, error %d\n", result);
return 0;
}
scull_p_devno = firstdev;
scull_p_devices = kmalloc(scull_p_nr_devs * sizeof(struct scull_pipe), GFP_KERNEL);
if (scull_p_devices == NULL) {
unregister_chrdev_region(firstdev, scull_p_nr_devs);
return 0;
}
memset(scull_p_devices, 0, scull_p_nr_devs * sizeof(struct scull_pipe));
for (i = 0; i < scull_p_nr_devs; i++) {
init_waitqueue_head(&(scull_p_devices[i].inq));
init_waitqueue_head(&(scull_p_devices[i].outq));
init_MUTEX(&scull_p_devices[i].sem);
scull_p_setup_cdev(scull_p_devices + i, i);
}
printk(KERN_NOTICE "scull_p_setup_cdev success\n");
return scull_p_nr_devs;
}
int scull_init_module(void)
{
dev_t dev = 0;
return scull_p_init(dev) ? 0 : -1;
}
module_init(scull_init_module);
module_exit(scull_cleanup_module);
这是一个字符设备驱动程序,实现了类似管道的功能,支持异步通知机制
1. 核心数据结构
c
struct scull_pipe {
wait_queue_head_t inq, outq; /* 读写等待队列 */
char *buffer, *end; /* 缓冲区起始和结束 */
int buffersize; /* 缓冲区大小 */
char *rp, *wp; /* 读指针和写指针 */
int nreaders, nwriters; /* 读写者计数 */
struct fasync_struct *async_queue; /* 异步读者队列 */
struct semaphore sem; /* 互斥信号量 */
struct cdev cdev; /* 字符设备结构 */
};
2. 函数功能详解
2.1. 设备管理函数
scull_p_init()
- 设备初始化
- 分配设备号区域
- 分配设备内存
- 初始化每个设备的等待队列和信号量
- 注册字符设备
scull_p_setup_cdev()
- 设置字符设备
- 初始化
cdev
结构 - 关联文件操作函数集
- 添加到系统
scull_p_cleanup()
- 清理函数
- 删除字符设备
- 释放缓冲区内存
- 释放设备内存
- 注销设备号
2.2. 文件操作函数
scull_p_open()
- 打开设备
c
static int scull_p_open(struct inode *inode, struct file *filp)
- 获取设备结构
- 分配缓冲区(首次打开时)
- 初始化读写指针
- 更新读者/写者计数
- 设置为不可定位设备
scull_p_release()
- 关闭设备
c
static int scull_p_release(struct inode *inode, struct file *filp)
- 移除异步通知注册
- 更新读者/写者计数
- 释放缓冲区(最后一个用户关闭时)
2.3. 读写操作函数
scull_p_write()
- 写数据
c
static ssize_t scull_p_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
- 获取信号量
- 检查写入空间(可能睡眠等待)
- 计算可写入数据量
- 从用户空间拷贝数据
- 更新写指针
- 唤醒等待的读者
- 发送异步通知
scull_p_read()
- 读数据
c
static ssize_t scull_p_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
- 获取信号量
- 等待数据可读(可能睡眠)
- 计算可读取数据量
- 拷贝数据到用户空间
- 更新读指针
- 唤醒等待的写者
2.4. 辅助函数
spacefree()
- 计算空闲空间
- 计算缓冲区中可用的空闲字节数
- 处理环形缓冲区边界情况
scull_getwritespace()
- 获取写入空间
- 等待直到有足够的写入空间
- 支持非阻塞模式
- 处理信号中断
scull_p_fasync()
- 异步通知注册
c
static int scull_p_fasync(int fd, struct file *filp, int mode)
{
struct scull_pipe *dev = filp->private_data;
return fasync_helper(fd, filp, mode, &dev->async_queue);
}
功能:
- 注册或取消注册异步通知
- 调用标准
fasync_helper
管理异步队列 mode=1
:启用异步通知mode=0
:禁用异步通知
调用时机:
- 用户空间调用
fcntl(fd, F_SETFL, flags | FASYNC)
时 - 设备关闭时自动取消注册
2.5. 异步通知触发 - 在写操作中
c
/* 在 scull_p_write() 函数中 */
if (dev->async_queue)
kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
触发条件:
- 当有数据写入缓冲区时
- 检查
async_queue
不为空(有进程注册了异步通知) - 发送
SIGIO
信号,附带POLL_IN
事件(数据可读)
2.6. 异步通知清理 - 在释放操作中
c
/* 在 scull_p_release() 函数中 */
scull_p_fasync(-1, filp, 0); // 取消异步通知注册
3. 异步通知完整工作流程
用户进程 内核 scullp驱动 写入进程 open("/dev/scullp") fcntl(F_SETFL | FASYNC) scull_p_fasync(1) 添加到async_queue 注册SIGIO处理函数 write(data) 数据写入缓冲区 kill_fasync(SIGIO, POLL_IN) 发送SIGIO信号 调用信号处理函数 read() 读取数据 用户进程 内核 scullp驱动 写入进程
4. 用户空间测试对应关系
-
注册阶段:
cfcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | FASYNC);
→ 调用
scull_p_fasync(1)
-
通知阶段:
cecho "data" > /dev/scullp
→ 调用
scull_p_write()
→kill_fasync()
-
清理阶段:
cclose(fd);
→ 调用
scull_p_release()
→scull_p_fasync(0)
五、模块编译文件Makefile
用于编译ko模块的配置文件
makefile
ifneq ($(KERNELRELEASE),)
# 在内核构建系统中(由 kbuild 调用时)
obj-m := scullp.o
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:
@echo "[DEBUG] 正在执行内核模块编译..."
@echo "[DEBUG] MAKE = $(MAKE)" # 打印 MAKE 变量
@echo "[DEBUG] uname -r = $(shell uname -r)" # 打印当前内核版本
@echo "[DEBUG] KERNELRELEASE = $(KERNELRELEASE)"
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
endif
clean:
@echo "[DEBUG] 正在清理编译文件..."
$(MAKE) -C $(KERNELDIR) M=$(PWD) clean
rm -f *.ko *.mod.c *.mod.o *.o .tmp_versions
在源码同级目录创建Makefile
文件并执行make
命令,即可获得目标scullp.ko
文件,文件具体含义见文章开头的参考博客
六、模块加载和卸载脚本
1.加载模块
加载scullp.ko
模块的脚本scull_load
如下,因为我们如果简单使用insmod
命令进行加载的话还需要在/dev
目录下手动创建字符设备节点,现在这个脚本把这些工作一起完成了,记得给脚本赋予执行权限,执行命令:
shell
sudo chmod 744 scull_load
sudo ./scull_load
shell
#!/bin/sh
module="scullp"
device="scullp"
mode="666"
if grep -q '^staff:' /etc/group; then
group="staff"
else
group="wheel"
fi
/sbin/insmod ./$module.ko $* || exit 1
major=$(awk "\$2==\"$module\" {print \$1}" /proc/devices)
rm -f /dev/${device}[0-3]
mknod /dev/${device}0 c $major 0
mknod /dev/${device}1 c $major 1
mknod /dev/${device}2 c $major 2
mknod /dev/${device}3 c $major 3
ln -sf ${device}0 /dev/${device}
chgrp $group /dev/${device}[0-3]
chmod $mode /dev/${device}[0-3]
下面对脚本的内容进行详细解释
变量定义
shell
module="scullp"
module="scullp"
: 定义变量module
的值为"scullp"
,表示内核模块的名称(不含.ko
扩展名)
shell
device="scullp"
device="scullp"
: 定义变量device
的值为"scullp"
,表示设备文件的名称前缀
shell
mode="664"
mode="664"
: 定义变量mode
的值为"664"
,表示设备文件的权限位:6
(rw-
):所有者有读写权限6
(rw-
):组用户有读写权限4
(r--
):其他用户只有读权限
确定用户组
shell
if grep -q '^staff:' /etc/group; then
grep -q '^staff:' /etc/group
: 使用grep
静默模式 (-q
) 查找/etc/group
文件中以staff:
开头的行^staff:
:^
表示行首,查找精确匹配staff:
的组- 如果找到返回真(条件成立)
shell
group="staff"
- 如果找到
staff
组,设置group
变量为"staff"
shell
else
group="wheel"
fi
-
如果没有找到
staff
组,设置group
变量为"wheel"
-
fi
: 结束 if 条件语句不同的 Linux 发行版使用不同的默认用户组,这里尝试兼容两种常见情况。
加载内核模块
shell
/sbin/insmod ./$module.ko $* || exit 1
/sbin/insmod
: 使用绝对路径调用insmod
命令(加载内核模块)./$module.ko
:./scullp.ko
- 当前目录下的模块文件$*
: 所有传递给脚本的命令行参数(可以传递模块参数)|| exit 1
: 或操作 ,如果前面的命令失败(返回非零),则执行exit 1
退出脚本并返回错误码 1
获取主设备号
shell
major=$(awk "\$2==\"$module\" {print \$1}" /proc/devices)
major=$(...)
: 命令替换,将命令输出赋值给major
变量awk "\$2==\"$module\" {print \$1}" /proc/devices
:- 解析
/proc/devices
文件(包含已注册的设备号) \$2==\"$module\"
: 当第二列等于 "scullp" 时{print \$1}
: 打印第一列(主设备号)- 反斜杠用于转义特殊字符,防止 shell 提前解释
- 解析
清理旧的设备文件
shell
rm -f /dev/${device}[0-3]
rm -f
: 强制删除文件,不提示错误/dev/${device}[0-3]
:/dev/scullp[0-3]
- 删除/dev/scullp0
到/dev/scullp3
四个设备文件[0-3]
: shell 通配符,匹配 0,1,2,3
创建设备节点
shell
mknod /dev/${device}0 c $major 0
mknod
: 创建设备特殊文件/dev/${device}0
:/dev/scullp0
- 设备文件路径c
: 字符设备类型$major
: 主设备号(从/proc/devices
获取)0
: 次设备号(第一个设备)
shell
mknod /dev/${device}1 c $major 1
mknod /dev/${device}2 c $major 2
mknod /dev/${device}3 c $major 3
- 同样方式创建另外三个设备节点,次设备号分别为 1,2,3
创建符号链接
shell
ln -sf ${device}0 /dev/${device}
ln -sf
: 创建软链接(符号链接),-f
强制覆盖已存在的链接${device}0
:scullp0
- 链接目标/dev/${device}
:/dev/scullp
- 链接名称- 作用 : 创建
/dev/scullp
指向/dev/scullp0
,提供默认设备访问
设置设备文件权限
shell
chgrp $group /dev/${device}[0-3]
chgrp
: 改变文件组所有权$group
:staff
或wheel
(之前确定的组)/dev/${device}[0-3]
:/dev/scullp[0-3]
- 所有四个设备文件- 作用: 让指定组的用户也能访问这些设备
shell
chmod $mode /dev/${device}[0-3]
-
chmod
: 改变文件权限 -
$mode
:664
- 之前设置的权限 -
/dev/${device}[0-3]
: 所有四个设备文件 -
作用: 设置具体的读写权限
2.卸载模块
卸载`scullp.ko`模块的脚本`scull_unload`同样如此,记得给脚本赋予执行权限,执行命令:
shell
sudo chmod 744 scull_unload
sudo ./scull_unload
shell
#!/bin/sh
module="scullp"
device="scullp"
/sbin/rmmod $module $* || exit 1
rm -f /dev/${device} /dev/${device}[0-3]
3.验证模块
确认内核已创建字符设备scullp
shell
cat /proc/devices | grep scullp
预期有类似如下输出
text
253 scullp
确认用户空间设备文件scullp0-3
已创建
shell
ls /dev/scull*
预期有类似如下输出
text
/dev/scullp /dev/scullp0 /dev/scullp1 /dev/scullp2 /dev/scullp3
确认字符设备读写功能正常
shell
echo "test" > /dev/scullp
cat /dev/scullp
预期有如下输出
text
test
七、scullp
模块fasync
功能测试
1.测试代码
c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
volatile sig_atomic_t got_data = 0;
void handle_sigio(int sig) {
if (sig == SIGIO) got_data = 1;
}
int main() {
int fd;
char buf[1024];
ssize_t n;
// 打开设备
fd = open("/dev/scullp", O_RDONLY);
if (fd < 0) {
perror("open");
exit(1);
}
// 设置信号处理
signal(SIGIO, handle_sigio);
fcntl(fd, F_SETOWN, getpid());
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | FASYNC);
printf("Waiting for data on /dev/scullp...\n");
while(1) {
pause(); // 等待信号
if (got_data) {
while ((n = read(fd, buf, sizeof(buf)-1)) > 0) {
buf[n] = 0;
printf("Read: %s", buf);
}
got_data = 0;
}
}
close(fd);
return 0;
}
2.编译执行验证
编译
shell
gcc test_scullp.c -o test_scullp
运行
shell
./test_scullp
验证,另一个终端输入
shell
echo "test" > /dev/scullp
当前终端预期看到如下输出
text
Waiting for data on /dev/scullp...
Read: test
八、标准输入输出fasync
功能测试
1.测试代码
c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
int gotdata=0;
void sighandler(int signo)
{
if (signo==SIGIO)
gotdata++;
return;
}
char buffer[4096];
int main(int argc, char **argv)
{
int count;
struct sigaction action;
memset(&action, 0, sizeof(action));
action.sa_handler = sighandler;
action.sa_flags = 0;
sigaction(SIGIO, &action, NULL);
fcntl(STDIN_FILENO, F_SETOWN, getpid());
fcntl(STDIN_FILENO, F_SETFL, fcntl(STDIN_FILENO, F_GETFL) | FASYNC);
while(1) {
/* this only returns if a signal arrives */
sleep(86400); /* one day */
if (!gotdata)
continue;
count=read(0, buffer, 4096);
/* buggy: if avail data is more than 4kbytes... */
write(1,buffer,count);
memset(buffer, 0, 4096);
gotdata=0;
}
}
使用 SIGIO
信号来实现异步 I/O,当标准输入有数据可读时,信号处理函数会被调用,然后程序读取并回显数据
gotdata
:标志变量,表示有数据到达sighandler
:信号处理函数,收到SIGIO
时增加gotdata
计数buffer
:数据读取缓冲区
信号处理设置
- 使用
sigaction
注册SIGIO
信号的处理函数 sa_flags = 0
使用默认的信号处理行为
设置异步I/O
F_SETOWN
:设置接收SIGIO
信号的进程为当前进程F_SETFL
与FASYNC
:在标准输入上启用异步通知模式
工作流程:
- 睡眠很长时间(实际上会被信号中断)
- 如果
gotdata
被设置,读取输入数据 - 将数据写入标准输出
- 重置
gotdata
标志
2. 编译并执行
shell
gcc fasync_test.c -o fasync_test
./fasync_test
终端输入
text
test
预期输出
test
test