Embedding是什么?Embedding的原理是什么?

Embedding

Embedding是一种将离散的非结构化数据(如文字、图像、用户ID)映射为连续向量空间的技术。

其核心是将高维稀疏数据转化为低维稠密向量,每个向量包含对象的语义信息(如词义、关联性)。

向量间的距离(如余弦相似度)可量化对象相关性,距离越小表示语义越相近。

讲人话

想象把每个词变成一串数字坐标(如"猫"=[0.2,-1.3,4.5]),就像用经纬度定位城市。

这些数字不仅代表词本身,还隐含它的含义: 比如"猫"和"狗"的坐标接近,但"猫"和"汽车"的坐标相距甚远。

计算机通过这种数字化的"地图"理解词语之间的关系。

Embedding的原理

Embedding的生成依赖上下文学习模型(如Word2Vec)。以Skip-gram模型为例: 输入中心词(如"国王"),模型预测其周围词(如"王冠""城堡")。

训练后,模型权重矩阵的行向量即对应词的Embedding。

通过调整向量空间,使语义相近词(如"国王-女王")的向量方向一致,数学关系可推导(如"国王-男人+女人≈女王")。

通俗来说

模型通过"猜邻居词"学习词语含义。例如,给"苹果"一词,模型需猜出周围可能是"吃""甜'"手机"(水果或品牌)。

反复训练后,含义相似的词会聚在一起,而"苹果(水果)"和"苹果(公司)"会因不同上下文分布在向量空间的不同区域。

Embedding实践案例

RAG(检索增强生成): 将文档库转化为Embedding存入向量数据库。

用户提问时,系统检索语义最相关的文档片段,输入大模型生成精准答案,解决"幻觉"问题。

多模态应用: CLIP模型将图像和文本映射到同一向量空间,实现"以图搜文"(如上传猫图搜索"宠物照片"描述)。

讲人话

客服机器人用Embedding匹配用户问题(如"退款流程")与知识库答案,无需手动设置关键词。

电商平台通过用户浏览商品的Embedding,推荐相似商品(如喜欢球鞋的用户看到运动袜)。

总结

Embedding是数据的"数字化DNA": 它将语言、图像等高维信息压缩为低维向量(如300个数字),向量距离反映语义相关性。

技术本质是通过模型学习上下文规律(如Word2Vec),使计算机理解"猫接近狗而远离汽车"。

实际应用中,Embedding支撑了推荐系统、多模态搜索、RAG等场景,成为大模型落地企业的核心基础设施。

简而言之: 它让机器像人类一样"联想"万物关系。

相关推荐
砖业林coco20 小时前
go语言使用 zhinao-go 轻松调用 360智脑
llm·go
Baihai_IDP21 小时前
怎样为你的 RAG 应用选择合适的嵌入模型?
人工智能·llm·aigc
常先森21 小时前
【解密源码】 RAGFlow 切分最佳实践- naive parser 语义切块(pdf 篇)
架构·llm·agent
多喝开水少熬夜2 天前
损失函数系列:focal-Dice-vgg
图像处理·python·算法·大模型·llm
大千AI助手2 天前
微软SPARTA框架:高效稀疏注意力机制详解
人工智能·深度学习·神经网络·llm·大千ai助手·sparta·稀疏注意力机制
Cyril_KI2 天前
大模型长文生成中的幻觉与事实性:研究进展综述
大模型·llm·github·综述·幻觉
智泊AI2 天前
AI大模型八股 | 多模态RAG怎么做?
llm
win4r2 天前
🚀超越DeepSeek-OCR!OCR领域的革命性突破:Chandra OCR本地部署+真实测评!手写体、繁体字、数学公式、重叠文字全部完美识别,告别漏字漏页
llm·aigc·deepseek
FreeCode2 天前
Agent开发:LangChain1.0快速入门(一)
人工智能·llm·agent
数据智能老司机2 天前
使用 Python 入门 Model Context Protocol(MCP)——构建客户端
llm·agent·mcp