LangChain×Qwen3:高性能RAG系统实战项目

本文较长,建议点赞收藏。更多AI大模型应用开发学习视频及资料,在智泊AI

大模型虽然强大,但依然存在两大痛点:

  • 幻觉问题:模型可能在缺乏事实支撑时"编造答案";
  • 知识断层:只能依赖训练时的存量知识,无法覆盖最新或垂直领域的信息。

这时,RAG(检索增强生成) 成为解决方案。它的思路很直接:

  1. 先检索→从外部知识库找到相关信息;
  2. 再生成→把检索结果交给大模型回答问题。

这种"检索+生成"的组合,不仅能降低幻觉率,还能让模型更快适应新的知识场景。

本期推荐和鲸社区创作者@云逸~分享的LangChain RAG系统实战项目,其完整演示了如何结合LangChain框架Qwen3模型,从数据索引到接口服务,搭建出一个可落地的RAG问答系统。

为什么选择LangChain?

实现一个RAG系统并不复杂,但要把整个链路从数据加载、向量化、检索、排序到生成打通,过程冗长。LangChain的优势就在于它的模块化和生态支持:

  • 现成组件:数据切分、向量数据库、检索器、问答链等开箱即用;
  • 生态丰富:支持FAISS、Milvus、Pinecone等数据库,也兼容OpenAI、Qwen等Embedding和LLM;
  • 可扩展:不仅能做RAG,还能扩展到多步推理、工具调用、对话记忆等复杂应用。

这意味着开发者可以把更多精力放在业务逻辑和效果优化上,而不是从零造轮子。

干货解析:RAG三步走

在项目中,RAG 的核心流程被拆解为三步,每一步都有清晰的实现:

构建索引:让文档"能被理解"

  • 项目做法 :加载四大名著等中文古典小说,先切分成合适的片段,再用Qwen3-Embedding-4B将其向量化。
  • 价值 :Embedding 把文本变成"语义坐标",存入FAISS向量数据库,让模型能按语义相似度检索,而不是死板的关键词匹配。

检索与精排:找到最相关的信息

  • 项目做法 :当用户提问时,系统会用向量检索召回候选片段,再用Qwen3-Reranker-4B对结果精排序。
  • 价值:粗召回保证覆盖面,精排保证准确性。这一步解决了很多"检索结果不准"的问题,让答案更贴近用户问题。

生成回答:大模型"有据可依"

  • 项目做法 :将排序后的上下文与问题一起打包成prompt,交给大模型,通过LangChain的RetrievalQA模块生成答案。
  • 价值:大模型的输出不再是"瞎编",而是基于检索结果的总结与推理,显著降低幻觉。

通过这三步,项目打通了RAG的完整闭环,形成了一个可实际使用的问答系统。

项目亮点

  • Embedding+Reranker组合 :使用Qwen3-Embedding-4B 做语义检索,Qwen3-Reranker-4B精排序,极大提升检索结果的相关性。
  • 全流程打通:从文档加载、索引构建,到FastAPI服务上线,完整覆盖从研发到应用全过程。
  • 真实调试经验:项目中记录了显存溢出、类型报错等常见问题及解决方案,贴近一线开发实践。
  • 扩展性强:项目留出了优化空间,比如更灵活的分块策略、更智能的prompt设计,适合二次开发。

💻一键Fork项目:www.heywhale.com/u/bf1ecb(复制至浏览器打开)

学习资源推荐

如果你想更深入地学习大模型,以下是一些非常有价值的学习资源,这些资源将帮助你从不同角度学习大模型,提升你的实践能力。

本文较长,建议点赞收藏。更多AI大模型应用开发学习视频及资料,在智泊AI

相关推荐
Shawn_Shawn5 小时前
大模型的奥秘:Token与Transformer简单理解
人工智能·llm
未来魔导13 小时前
Gin版本的路由总结
开发语言·llm·gin·路由
用户23452670098213 小时前
Python构建AI Agent自主智能体系统深度好文
后端·程序员
Gopher14 小时前
逝水流远,长忆当歌——我的2025
程序员
mingchen_peng14 小时前
第三章 大语言模型基础
大模型·llm·hello-agent
文心快码BaiduComate14 小时前
给 AI 装上“员工手册”:如何用Rules 给文心快码 (Comate) 赋能提效?
前端·程序员·前端框架
程序员鱼皮15 小时前
全面封禁 Cursor!又一家大厂出手了
程序员·ai编程·cursor
骚戴15 小时前
深入解析:Gemini 3.0 Pro 的 SSE 流式响应与跨区域延迟优化实践
java·人工智能·python·大模型·llm
智泊AI15 小时前
为什么Anthropic说:AI的未来是Skills不是Agent?
llm