arcgis重采样插值方法的选择

可以看到,ArcGIS官方一共提供了4种栅格数据重采样的方法,分别是最邻近分配法(NEAREST)、众数算法(MAJORITY)、双线性插值法(BILINEAR)与三次卷积插值法(CUBIC)。

首先,最邻近分配法是速度最快的插值方法。这一方法主要用于离散数据(如土地利用分类数据),因为这一方法不会更改像元的值。使用这一方法进行重采样,最大空间误差将是像元大小的一半。

其次,众数算法根据过滤器窗口中频率最高的数值来作为像元的新值。其与最邻近分配法一样,主要用于离散数据;但与最邻近分配法相比,众数算法通常可生成更平滑的结果。众数算法将在与输出像元中心最接近的输入空间中查找相应的4 x 4像元,并使用4 x 4相邻点的众数作为像元的新值。

再次,双线性插值法基于四个最邻近的输入像元中心的加权平均距离来确定像元的新值。这一方法对连续数据非常有用(且只能对连续数据使用),且会对数据进行一些平滑处理。

最后,三次卷积插值法通过拟合穿过16个最邻近输入像元中心的平滑曲线确定像元的新值。这一方法仅适用于连续数据,但要注意其所生成的输出栅格可能会包含输入栅格范围以外的值。如果大家不想出现这种情况,按照官方的说法,就需要转而使用双线性插值法。与通过运行最邻近分配法获得的栅格相比,三次卷积插值法的输出结果的几何变形程度较小。三次卷积插值法的缺点是需要更多的处理时间。

了解上述原理,我们就对选择哪一个方法有了比较清楚地认识。例如,我这里需要进行重采样操作的是一个类别数据,因此就只能选择最邻近分配法与众数算法;而后,我们可以结合实际需要进行两种方法的二选一即可(或者直接用2种方法运行一遍,看看哪一个方法对应的结果更符合自己的需要)。如果大家需要进行重采样操作的是连续数据,那么4种方法理论上都是可以的,但是后两种方法相对更适合一些;大家结合需要选择或者分别运行一次,找到最合适的结果即可。

相关推荐
23遇见2 小时前
基于 CANN 框架的 AI 加速:ops-nn 仓库的关键技术解读
人工智能
Codebee2 小时前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能
光泽雨3 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
Σίσυφος19003 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…3 小时前
机器学习的商业化变现
人工智能·机器学习
sali-tec3 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_3 小时前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能
AI袋鼠帝3 小时前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha3 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
方见华Richard3 小时前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算