OkHttp 的 Dispatcher 调度机制

总体思路

Dispatcher 维护三组队列并用一个 ExecutorService 执行异步任务:

  • readyAsyncCalls:已排队、等待调度的异步请求

  • runningAsyncCalls:正在执行的异步请求

  • runningSyncCalls:正在执行的同步请求

    还暴露 maxRequests(默认 64 )与 maxRequestsPerHost(默认 5 )两道闸门控制并发。异步入队后,通过 promoteAndExecute() 把"达标"的请求从 ready 提升到 running 并提交线程池。

关键数据结构与默认线程池

  • 默认线程池:ThreadPoolExecutor(0, Int.MAX_VALUE, 60s, SynchronousQueue)(即 cached-pool 语义)。你也可传入自定义的 ExecutorService。

  • 两个并发阈值:

    • maxRequests:全局并发上限(默认 64)

    • maxRequestsPerHost:单 host 并发上限(默认 5,WebSocket 不计入

      修改任一值都会触发一次 promoteAndExecute() 以尝试推进排队任务。

调度算法(promoteAndExecute())

简化后的流程(注意:执行阶段不持有锁,避免回调用户代码时死锁):

  1. 加锁遍历 readyAsyncCalls:

    • 若 runningAsyncCalls.size >= maxRequests → 停;
    • 若该调用的 callsPerHost >= maxRequestsPerHost → 跳过;
    • 否则把该调用从 ready 移到 running,并 callsPerHost++,放入"可执行列表"。
  2. 释放锁,逐个 executeOn(executorService) 真正提交到线程池。

  3. 返回当前是否还有运行中的调用。

    对应代码逻辑就在 promoteAndExecute() 与 enqueue()/finished() 的配合里。

单 Host 计数是如何做的?

enqueue() 时,会尝试在现有的 runningready寻找同 host 的调用 ,如果找到了,就复用对方的 AtomicInteger 来统计该 host 的并发计数;这样同一 host 的排队与执行共享同一把计数器,能更精准地卡 maxRequestsPerHost。

生命周期与空闲回调

  • 同步调用:Call.execute() 开始时登记到 runningSyncCalls,结束时 finished() 移除并触发一次调度。

  • 异步调用:AsyncCall 结束时 callsPerHost--,从 runningAsyncCalls 移除,再触发调度。

  • 总运行数归零时,若设置了 idleCallback 会被调用(注意:异步是在回调返回后才视为 idle;同步是在 execute() 返回时)。

与线程池的关系(为什么不在池里排队)

OkHttp 的排队在 Dispatcher 内存里做,不是在线程池队列里做:

  • 线程池用 SynchronousQueue ------ 不排队,能执行就直接交给线程,否则新建线程(直到 Dispatcher 的并发阈值到顶)。

  • 真正的"上限与公平"由 maxRequests/PerHost 控制,而不是线程池大小。

HTTP/2 与 WebSocket 的细节

  • maxRequestsPerHost 是按 URL host 名计数(不同域名可能共享 IP,因此该限制不保证按 IP 收敛)。

  • WebSocket 不占用单 host 配额(避免长连接把配额吃满)。

常见坑 & 建议

  • readyAsyncCalls 是内存队列默认无显式上限;若你持续入队且后端挂起,可能看到内存增长(需要你从业务侧限流或调低 maxRequests)。

  • 调参优先级:先评估 服务器承载端上资源 → 再合理设置 maxRequests/maxRequestsPerHost;必要时自定义 ExecutorService 或在业务层加 Semaphore/令牌桶。

实用示例:自定义并发与空闲回调

ini 复制代码
val dispatcher = Dispatcher().apply {
  maxRequests = 32              // 全局并发
  maxRequestsPerHost = 8        // 单 host 并发
  idleCallback = Runnable { println("network idle") }
}

val client = OkHttpClient.Builder()
  .dispatcher(dispatcher)
  .build()

(如果你自己传 executorService,需确保它能跑得动你设置的最大并发。)

相关推荐
发现一只大呆瓜9 小时前
虚拟列表:支持“向上加载”的历史消息(Vue 3 & React 双版本)
前端·javascript·面试
千寻girling10 小时前
Koa.js 教程 | 一份不可多得的 Node.js 的 Web 框架 Koa.js 教程
前端·后端·面试
程序员清风10 小时前
北京回长沙了,简单谈谈感受!
java·后端·面试
网络安全-杰克11 小时前
2026面试自动化测试面试题【含答案】
自动化测试·软件测试·面试·职场和发展
千寻girling14 小时前
主管:”人家 Node 框架都用 Nest.js 了 , 你怎么还在用 Express ?“
前端·后端·面试
xiaoxue..15 小时前
合并两个升序链表 与 合并k个升序链表
java·javascript·数据结构·链表·面试
猿小羽16 小时前
AIGC 应用工程师(3-5 年)面试题精讲:从基础到实战的系统备战清单
面试·大模型·aigc·agent·rag
boooooooom17 小时前
Pinia必学4大核心API:$patch/$reset/$subscribe/$onAction,用法封神!
javascript·vue.js·面试
试着18 小时前
【huawei】机考整理
学习·华为·面试·机试
石去皿18 小时前
【嵌入式就业6】计算机组成原理与操作系统核心机制:夯实底层基础
c++·面试·嵌入式