浏览器端实时语音采集 + WebSocket 传输 + 后端 Whisper + GPT 翻译 + 实时字幕返回

这个版本相当于一个轻量级"实时同传字幕服务器",

打开网页 → 点击录音 → 说话

后端实时识别并翻译 → 字幕实时显示

延迟在 1~2 秒内(取决于网络与模型大小)

可部署在局域网或云服务器(HTTP + WebSocket)

项目结构

realtime_subtitles/

├── server.py # FastAPI 后端(ASR + 翻译 + WebSocket)

├── static/

│ └── index.html # 前端网页

├── .env # OPENAI_API_KEY

└── requirements.txt

requirements.txt

fastapi

uvicorn

faster-whisper

soundfile

python-dotenv

openai

numpy

安装依赖:

pip install -r requirements.txt

.env

OPENAI_API_KEY=sk-...

server.py (FastAPI 后端)

import os

import asyncio

import tempfile

import numpy as np

import soundfile as sf

from fastapi import FastAPI, WebSocket, WebSocketDisconnect

from fastapi.staticfiles import StaticFiles

from faster_whisper import WhisperModel

from dotenv import load_dotenv

import openai

load_dotenv()

openai.api_key = os.getenv("OPENAI_API_KEY")

app = FastAPI()

app.mount("/", StaticFiles(directory="static", html=True), name="static")

初始化 Whisper 模型

print("🚀 Loading Whisper model...")

model = WhisperModel("small", device="cuda" if torch.cuda.is_available() else "cpu")

print("✅ Model ready.")

async def translate_text(text: str):

"""调用 LLM 翻译"""

prompt = f"将以下英文句子翻译成自然、口语化的中文字幕:\n{text}\n翻译:"

try:

response = openai.ChatCompletion.create(

model="gpt-4o-mini",

messages=[{"role": "user", "content": prompt}],

temperature=0.2,

max_tokens=150,

)

return response.choices[0].message.content.strip()

except Exception as e:

return f"(翻译失败:{e})"

@app.websocket("/ws/audio")

async def websocket_endpoint(websocket: WebSocket):

await websocket.accept()

buffer = bytearray()

last_receive = asyncio.get_event_loop().time()

复制代码
try:
    while True:
        data = await websocket.receive_bytes()
        buffer.extend(data)
        now = asyncio.get_event_loop().time()

        # 每约1秒钟处理一次
        if len(buffer) > 32000 * 2 or (now - last_receive > 1.0):
            last_receive = now
            tmpf = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
            arr = np.frombuffer(buffer, dtype=np.int16).astype(np.float32) / 32768.0
            sf.write(tmpf.name, arr, 16000, subtype="FLOAT")

            segments, info = model.transcribe(tmpf.name, beam_size=3)
            text = " ".join([seg.text for seg in segments]).strip()
            buffer = bytearray()

            if text:
                translated = await asyncio.to_thread(translate_text, text)
                await websocket.send_json({"en": text, "zh": translated})
except WebSocketDisconnect:
    print("🔌 WebSocket disconnected")
except Exception as e:
    print("❌ Error:", e)

static/index.html (浏览器端)
实时翻译字幕 Demo

🎙️ 实时语音翻译字幕 Demo

🎤 开始录音

运行与测试

在项目目录下运行:

uvicorn server:app --host 0.0.0.0 --port 8000

打开浏览器访问:http://localhost:8000

点击"🎤 开始录音",对麦克风讲话(英文),几秒后会看到中英文字幕实时出现。

架构逻辑图

Browser (Audio Stream via WebRTC/WS)

↓ PCM chunks

FastAPI WebSocket Endpoint

Whisper (faster-whisper small)

GPT 翻译 (ChatCompletion)

send_json({en, zh})

Browser Subtitle Display

优化方向

相关推荐
lang2015092812 小时前
WebSocket子协议STOMP
网络·websocket·网络协议
兔兔爱学习兔兔爱学习14 小时前
一个可本地运行的实时字幕翻译 Demo(Whisper + GPT + Streamlit),可以边说边出中英文字幕
gpt·whisper
迪三达19 小时前
GPT-1 技术报告
gpt
oioihoii20 小时前
Rust中WebSocket支持的实现
开发语言·websocket·rust
Rysxt_1 天前
MQTT 与 WebSocket 对比教程:物联网与实时通信协议选择指南
物联网·websocket·网络协议
数据饕餮1 天前
Faster-Whisper唤醒词检测程序设计实战1
whisper
说话的鲸鱼2 天前
‌Whisper模型在RTranslator中的实时语音识别优化:动态资源分配与负载均衡
whisper·负载均衡·语音识别
电脑小白技术2 天前
u盘安装系统提示“windows无法安装到这个磁盘,选中的磁盘具有gpt分区表”解决方法
windows·gpt·windows无法安装到磁盘
余衫马2 天前
GPT结构剖析:从“词袋”到“思想”的魔法之旅
人工智能·gpt·大模型