本文介绍了一个基于YOLO的目标检测类ObjectDetector,支持YOLOv8标准模型和YOLO-World自定义模型。该类提供了两种模型加载方式:标准YOLOv8模型(80类)和可自定义检测类别的YOLO-World模型。主要功能包括模型自动加载和单张图片检测,能够输出检测目标的类别、数量和平均置信度,并保存检测结果图像。使用示例展示了如何初始化检测器并进行图片检测。该实现具有自动回退机制,当指定模型加载失败时会自动切换为标准模型。


python
from ultralytics import YOLO
import cv2
import os
class ObjectDetector:
def __init__(self, model_type='standard'):
"""
参数:
model_type: 'standard' 或 'world'
"""
self.model_type = model_type
self.model = None
self.load_model()
def load_model(self):
"""加载模型"""
try:
if self.model_type == 'world':
# 加载YOLO World模型
self.model = YOLO("E:/PYTHON/object_regconnition/YOLO-World/yolo_world_v2_l_clip_large_o365v1_goldg_pretrain_800ft-9df82e55.pth")
# 设置自定义类别
custom_classes = ["person", "bicycle", "car", "motorcycle", "bus", "truck",
"dog", "cat", "bird", "chair", "table", "laptop", "phone"]
self.model.set_classes(custom_classes)
print("✅ YOLO World模型加载成功,使用自定义类别")
else:
# 加载标准YOLOv8模型
self.model = YOLO('yolov8n.pt')
print("✅ 标准YOLOv8模型加载成功,使用80个预定义类别")
print(f"📊 可检测类别数量: {len(self.model.names)}")
except Exception as e:
print(f"❌ 模型加载失败: {e}")
# 回退到标准模型
print("🔄 回退到标准YOLOv8模型...")
self.model = YOLO('yolov8n.pt')
self.model_type = 'standard'
def detect_image(self, image_path, save_result=True):
"""检测单张图片"""
if not os.path.exists(image_path):
print(f"❌ 图片不存在: {image_path}")
return
try:
# 进行预测
results = self.model.predict(image_path, conf=0.25)
# 处理结果
result = results[0]
# 打印检测结果
print(f"\n🎯 在 {os.path.basename(image_path)} 中检测到:")
print("-" * 50)
detections = {}
for box in result.boxes:
cls_id = int(box.cls.item())
confidence = box.conf.item()
class_name = self.model.names[cls_id]
if class_name not in detections:
detections[class_name] = []
detections[class_name].append(confidence)
# 打印汇总结果
for class_name, confidences in detections.items():
avg_conf = sum(confidences) / len(confidences)
print(f" {class_name}: {len(confidences)} 个, 平均置信度: {avg_conf:.3f}")
# 保存结果图像
if save_result:
output_path = f"detected_{os.path.basename(image_path)}"
result.save(filename=output_path)
print(f"💾 结果保存为: {output_path}")
return result
except Exception as e:
print(f"❌ 检测失败: {e}")
return None
# 使用示例
if __name__ == "__main__":
# 创建检测器
detector = ObjectDetector(model_type='standard') # 或 'world'
# 检测图片
image_path = "image.jpg" # 替换为你的图片路径
detector.detect_image(image_path)
# 检测图片
image_path = "image2.png" # 替换为你的图片路径
detector.detect_image(image_path)