网络原理-进阶

⽹络层

IP协议


• 4位版本号(version): 指定IP协议的版本, 对于IPv4来说, 就是4.
• 4位头部⻓度(header length): IP头部的⻓度是多少个32bit, 也就是 length * 4 的字节数. 4bit表⽰最⼤的数字是15, 因此IP头部最⼤⻓度是60字节.
• 8位服务类型(Type Of Service): 3位优先权字段(已经弃⽤), 4位TOS字段, 和1位保留字段(必须置为0). 4位TOS分别表⽰: 最⼩延时, 最⼤吞吐量, 最⾼可靠性, 最⼩成本. 这四者相互冲突, 只能选择⼀个. 对于ssh/telnet这样的应⽤程序, 最⼩延时⽐较重要; 对于ftp这样的程序, 最⼤吞吐量⽐较重要.
• 16位总⻓度(total length): IP数据报整体占多少个字节.
• 16位标识(id): 唯⼀的标识主机发送的报⽂. 如果IP报⽂在数据链路层被分⽚了, 那么每⼀个⽚⾥⾯的这个id都是相同的.
• 3位标志字段: 第⼀位保留(保留的意思是现在不⽤, 但是还没想好说不定以后要⽤到). 第⼆位置为1表⽰禁⽌分⽚, 这时候如果报⽂⻓度超过MTU, IP模块就会丢弃报⽂. 第三位表⽰"更多分⽚", 如果分⽚了的话, 最后⼀个分⽚置为1, 其他是0. 类似于⼀个结束标记.
• 13位分⽚偏移(framegament offset): 是分⽚相对于原始IP报⽂开始处的偏移. 其实就是在表⽰当前
分⽚在原报⽂中处在哪个位置. 实际偏移的字节数是这个值 * 8 得到的. 因此, 除了最后⼀个报⽂之
外, 其他报⽂的⻓度必须是8的整数倍(否则报⽂就不连续了)。
• 8位⽣存时间(Time To Live, TTL): 数据报到达⽬的地的最⼤报⽂跳数. ⼀般是64. 每次经过⼀个路
由, TTL -= 1, ⼀直减到0还没到达, 那么就丢弃了. 这个字段主要是⽤来防⽌出现路由循环
• 8位协议: 表⽰上层协议的类型
• 16位头部校验和: 使⽤CRC进⾏校验, 来鉴别头部是否损坏.
• 32位源地址和32位⽬标地址: 表⽰发送端和接收端。

地址管理

⽹段划分
IP地址分为两个部分, ⽹络号和主机号
• ⽹络号: 保证相互连接的两个⽹段具有不同的标识;
• 主机号: 同⼀⽹段内, 主机之间具有相同的⽹络号, 但是必须有不同的主机号;
• 不同的⼦⽹其实就是把⽹络号相同的主机放到⼀起
• 如果在⼦⽹中新增⼀台主机, 则这台主机的⽹络号和这个⼦⽹的⽹络号⼀致, 但是主机号必须不能和⼦⽹中的其他主机重复.通过合理设置主机号和⽹络号, 就可以保证在相互连接的⽹络中, 每台主机的IP地址都不相同.
那么问题来了, ⼿动管理⼦⽹内的IP, 是⼀个相当⿇烦的事情.
• 有⼀种技术叫做DHCP, 能够⾃动的给⼦⽹内新增主机节点分配IP地址, 避免了⼿动管理IP的不便.
• ⼀般的路由器都带有DHCP功能. 因此路由器也可以看做⼀个DHCP服务器
过去曾经提出⼀种划分⽹络号和主机号的⽅案, 把所有IP 地址分为五类, 如下图所⽰:

• A类 0.0.0.0到127.255.255.255
• B类 128.0.0.0到191.255.255.255
• C类 192.0.0.0到223.255.255.255
• D类 224.0.0.0到239.255.255.255
• E类 240.0.0.0到247.255.255.255
随着Internet的⻜速发展,这种划分⽅案的局限性很快显现出来,⼤多数组织都申请B类⽹络地址, 导致B类地址很快就分配完了, ⽽A类却浪费了⼤量地址;
• 例如, 申请了⼀个B类地址, 理论上⼀个⼦⽹内能允许6万5千多个主机. A类地址的⼦⽹内的主机数更多.
• 然⽽实际⽹络架设中, 不会存在⼀个⼦⽹内有这么多的情况. 因此⼤量的IP地址都被浪费掉了.
针对这种情况提出了新的划分⽅案, 称为CIDR(Classless Interdomain Routing):
• 引⼊⼀个额外的⼦⽹掩码(subnet mask)来区分⽹络号和主机号;
• ⼦⽹掩码也是⼀个32位的正整数. 通常⽤⼀串 "0" 来结尾;
• 将IP地址和⼦⽹掩码进⾏ "按位与" 操作, 得到的结果就是⽹络号;
• ⽹络号和主机号的划分与这个IP地址是A类、B类还是C类⽆关;

可⻅,IP地址与⼦⽹掩码做与运算可以得到⽹络号, 主机号从全0到全1就是⼦⽹的地址范围;
IP地址和⼦⽹掩码还有⼀种更简洁的表⽰⽅法,例如140.252.20.68/24,表⽰IP地址为140.252.20.68, ⼦⽹掩码的⾼24位是1,也就是255.255.255.0

特殊的IP地址

• 将IP地址中的主机地址全部设为0, 就成为了⽹络号, 代表这个局域⽹;
• 将IP地址中的主机地址全部设为1, 就成为了⼴播地址, ⽤于给同⼀个链路中相互连接的所有主机发送数据包;
• 127.*的IP地址⽤于本机环回(loop back)测试,通常是127.0.0.1

IP地址的数量限制

我们知道, IP地址(IPv4)是⼀个4字节32位的正整数. 那么⼀共只有 2的32次⽅ 个IP地址, ⼤概是43亿左右. ⽽TCP/IP协议规定, 每个主机都需要有⼀个IP地址.
这意味着, ⼀共只有43亿台主机能接⼊⽹络么?
实际上, 由于⼀些特殊的IP地址的存在, 数量远不⾜43亿; 另外IP地址并⾮是按照主机台数来配置的, ⽽是每⼀个⽹卡都需要配置⼀个或多个IP地址.
CIDR在⼀定程度上缓解了IP地址不够⽤的问题(提⾼了利⽤率, 减少了浪费, 但是IP地址的绝对上限并没有增加), 仍然不是很够⽤. 这时候有三种⽅式来解决:
• 动态分配IP地址: 只给接⼊⽹络的设备分配IP地址. 因此同⼀个MAC地址的设备, 每次接⼊互联⽹中,得到的IP地址不⼀定是相同的;
• NAT技术(后⾯会重点介绍);
• IPv6: IPv6并不是IPv4的简单升级版. 这是互不相⼲的两个协议, 彼此并不兼容; IPv6⽤16字节128位来表⽰⼀个IP地址; 但是⽬前IPv6还没有普及;

私有IP地址和公⽹IP地址

如果⼀个组织内部组建局域⽹,IP地址只⽤于局域⽹内的通信,⽽不直接连到Internet上,理论上 使⽤任意的IP地址都可以,但是RFC 1918规定了⽤于组建局域⽹的私有IP地址
• 10.*,前8位是⽹络号,共16,777,216个地址
• 172.16.到172.31.,前12位是⽹络号,共1,048,576个地址
• 192.168.*,前16位是⽹络号,共65,536个地址
包含在这个范围中的, 都成为私有IP, 其余的则称为全局IP(或公⽹IP);
• ⼀个路由器可以配置两个IP地址, ⼀个是WAN⼝IP, ⼀个是LAN⼝IP(⼦⽹IP).
• 路由器LAN⼝连接的主机, 都从属于当前这个路由器的⼦⽹中.
• 不同的路由器, ⼦⽹IP其实都是⼀样的(通常都是192.168.1.1). ⼦⽹内的主机IP地址不能重复. 但是⼦⽹之间的IP地址就可以重复了.
• 每⼀个家⽤路由器, 其实⼜作为运营商路由器的⼦⽹中的⼀个节点. 这样的运营商路由器可能会有很多级, 最外层的运营商路由器, WAN⼝IP就是⼀个公⽹IP了.
• ⼦⽹内的主机需要和外⽹进⾏通信时, 路由器将IP⾸部中的IP地址进⾏替换(替换成WAN⼝IP), 这样逐级替换, 最终数据包中的IP地址成为⼀个公⽹IP. 这种技术称为NAT(Network Address
Translation,⽹络地址转换).
• 如果希望我们⾃⼰实现的服务器程序, 能够在公⽹上被访问到, 就需要把程序部署在⼀台具有外⽹IP的服务器上. 这样的服务器可以在阿⾥云/腾讯云上进⾏购买.

数据链路层

4.1 认识以太⽹

• "以太⽹" 不是⼀种具体的⽹络, ⽽是⼀种技术标准; 既包含了数据链路层的内容, 也包含了⼀些物理层的内容. 例如: 规定了⽹络拓扑结构, 访问控制⽅式, 传输速率等;
• 例如以太⽹中的⽹线必须使⽤双绞线; 传输速率有10M, 100M, 1000M等;
• 以太⽹是当前应⽤最⼴泛的局域⽹技术; 和以太⽹并列的还有令牌环⽹, ⽆线LAN等;


• 源地址和⽬的地址是指⽹卡的硬件地址(也叫MAC地址), ⻓度是48位,是在⽹卡出⼚时固化的;
• 帧协议类型字段有三种值,分别对应IP、ARP、RARP;
• 帧末尾是CRC校验码。

认识MAC地址

• MAC地址⽤来识别数据链路层中相连的节点;
• ⻓度为48位, 及6个字节. ⼀般⽤16进制数字加上冒号的形式来表⽰(例如: 08:00:27:03:fb:19)
• 在⽹卡出⼚时就确定了, 不能修改. mac地址通常是唯⼀的(虚拟机中的mac地址不是真实的mac地
址, 可能会冲突; 也有些⽹卡⽀持⽤⼾配置mac地址).

对⽐理解MAC地址和IP地址

• IP地址描述的是路途总体的 起点 和 终点;
• MAC地址描述的是路途上的每⼀个区间的起点和终点;

重要应⽤层协议DNS(Domain Name System)

DNS是⼀整套从域名映射到IP的系统

DNS背景

TCP/IP中使⽤IP地址和端⼝号来确定⽹络上的⼀台主机的⼀个程序. 但是IP地址不⽅便记忆.
于是⼈们发明了⼀种叫主机名的东西, 是⼀个字符串, 并且使⽤hosts⽂件来描述主机名和IP地址的关系。
• DNS是应⽤层协议
• DNS底层使⽤UDP进⾏解析
• 浏览器会缓存DNS结果

相关推荐
瑞禧生物ruixibio10 小时前
CAS号:868141-12-2,UDP-6-N3-Galactose ,分子特点
网络·网络协议·udp
FAFU_kyp18 小时前
Spring Boot 邮件发送系统 - 从零到精通教程
java·网络·spring boot
报错小能手18 小时前
计算机网络自顶向下方法25——运输层 TCP流量控制 连接管理 “四次挥手”的优化
服务器·网络·计算机网络
郭源潮119 小时前
《Muduo网络库:实现TcpServer类终章》
服务器·网络·c++·网络库
机器学习之心21 小时前
基于双向时序卷积网络与门控循环单元(BiTCN-GRU)混合模型的时间序列预测MATLAB代码
网络·matlab·gru·bitcn-gru
我也要当昏君21 小时前
4.2【2022统考真题】
网络·智能路由器
jenchoi4131 天前
【2025-11-01】软件供应链安全日报:最新漏洞预警与投毒预警情报汇总
网络·安全·web安全·网络安全
Nimsolax1 天前
Linux网络传输层协议UDP
linux·网络·udp
我也要当昏君1 天前
4.2 【2018统考真题】
网络