一、三路比较运算符 (<=>)
三路比较运算符 (<=>) 是 C++20 引入的重要特性,其极大地简化了比较操作的实现,在C++20之前,我们自定义一个类型后,如果要支持所有比较运算符,那么我们需要分别实现如下一系列重载函数:
cpp
bool operator==(const CompareType& other);
bool operator<(const CompareType& other);
bool operator>(const CompareType& other);
bool operator!=(const CompareType& other);
bool operator<=(const CompareType& other);
bool operator>=(const CompareType& other);
这不仅增加了代码的复杂性,同时也更容易出错,消除不一致风险,如:a>b 和 a<b都为真?
在C++20之后,我们仅需要实现两个重载函数即可,如下:
cpp
// 使用默认
auto operator<=>(const CompareType&) const = default; // strong_ordering
// 自己实现
/*
注意:在自己实现三路比较运算符 (<=>) 的情况下,必现自定义实现
bool operator==(const CompareType& other),否则在进行==比较时,将编译不通过
C++这样设计的原因主要有:
1、性能原因,对于某些类型,相等比较可能比三路比较更高效
2、语义原因,有些类型的相等和排序语义可能不同:
*/
auto operator<=>(const CompareType& other) const
bool operator==(const CompareType& other) const;
下面是示例代码,及其相关注释:
cpp
class CompareType
{
public:
CompareType(int x, int y)
:mx(x)
, my(y)
{
}
/*
//1、C++20前,直接实现6个比较运算符
bool operator==(const CompareType& other) { return mx == other.mx && my == other.my; };
bool operator<(const CompareType& other)
{
if (mx < other.mx)
return true;
if (mx == other.mx)
return my < other.my;
return false;
};
bool operator>(const CompareType& other)
{
if (mx > other.mx)
return true;
if (mx == other.mx)
return my > other.my;
return false;
};
bool operator!=(const CompareType& other) { return mx != other.mx || my != other.my; };
bool operator<=(const CompareType& other) //
{
if (mx < other.mx)
return true;
if (mx == other.mx)
return my <= other.my;
return false;
};
bool operator>=(const CompareType& other)
{
if (mx > other.mx)
return true;
if (mx == other.mx)
return my >= other.my;
return false;
};
*/
//2、使用默认三路比较运算符 (<=>)
//auto operator<=>(const CompareType&) const = default; // strong_ordering
//3、自定义实现三路比较运算符 (<=>)
auto operator<=>(const CompareType& other) const
{
if (auto cmp = my <=> other.my; cmp != 0) return cmp;
return mx <=> other.mx;
}
bool operator==(const CompareType& other) const
{
//return mx == other.mx && my == other.my;
return make_tuple(mx, my) == make_tuple(other.mx, other.my);
//return (*this <=> other) == 0;
}
private:
int mx, my;
};
总之,使用三路比较运算符有如下优势:
(1)代码简化 - 只需实现一个运算符而不是6个
(2)一致性 - 确保所有比较操作行为一致
(3)性能 - 可能减少比较次数(特别是对于复杂对象)
(4)可读性 - 明确表达比较的意图
二、三路比较运算符 (<=>)返回值说明
三路比较运算符 (<=>)共有三种类型的返回值(即std::strong_ordering、std::weak_ordering、std::partial_ordering),他们主要的区别在于语义上的差异:
std::strong_ordering - 强序关系 -- 语义:完全等价的对象可以互相替换
std::weak_ordering - 弱序关系 -- 语义:等价的对象在某些方面有区别
std::partial_ordering - 偏序关系 -- 语义:存在不可比较的情况
所以我们重载可以有如下三种形式:
cpp
/*
具体选择哪种,需要根据实际情况以及语义进行选择(每个类只能重载一个哦,
违反单一语义原则:不能重载同一个运算符返回不同类型)
*/
//std::strong_ordering operator<=>(const CompareType& other) const;
//std::weak_ordering operator<=>(const CompareType& other) const;
//std::partial_ordering operator<=>(const CompareType& other) const;
auto operator<=>(const CompareType&) const
std::strong_ordering
表示强序关系
可比较对象完全等价(可互换)
cpp
// 可能的取值:
std::strong_ordering::less // <
std::strong_ordering::equal // ==
std::strong_ordering::greater // >
std::strong_ordering::equivalent // == (与 equal 值相同)
std::weak_ordering
表示弱序关系
可比较对象等价但不一定可互换
cpp
可能的取值:
std::weak_ordering::less
std::weak_ordering::equivalent
std::weak_ordering::greater
std::partial_ordering
表示偏序关系
允许不可比较的情况(如浮点数中的 NaN)
cpp
可能的取值:
std::partial_ordering::less
std::partial_ordering::equivalent
std::partial_ordering::greater
std::partial_ordering::unordered // 不可比较
选择指南
强序:值完全可比较且等价的对象可互换(如整数、字符串)
弱序:等价的对象不一定可互换(如忽略大小写的字符串)
偏序:存在不可比较的情况(如浮点数、指针)
下面我们来看看C++对于这三种返回值的定义的源码吧
cpp
// compare standard header (core)
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#ifndef _COMPARE_
#define _COMPARE_
#include <yvals_core.h>
#if _STL_COMPILER_PREPROCESSOR
#if !_HAS_CXX20
_EMIT_STL_WARNING(STL4038, "The contents of <compare> are available only with C++20 or later.");
#else // ^^^ !_HAS_CXX20 / _HAS_CXX20 vvv
#include <concepts>
#pragma pack(push, _CRT_PACKING)
#pragma warning(push, _STL_WARNING_LEVEL)
#pragma warning(disable : _STL_DISABLED_WARNINGS)
_STL_DISABLE_CLANG_WARNINGS
#pragma push_macro("new")
#undef new
_STD_BEGIN
void _Literal_zero_is_expected();
struct _Literal_zero {
template <class _Ty>
requires is_same_v<_Ty, int>
consteval _Literal_zero(_Ty _Zero) noexcept {
// Can't use _STL_VERIFY because this is a core header
if (_Zero != 0) {
_Literal_zero_is_expected();
}
}
};
using _Compare_t = signed char;
// 1、定义强枚举类型
// These "pretty" enumerator names are safe since they reuse names of user-facing entities.
enum class _Compare_eq : _Compare_t { equal = 0, equivalent = equal };
enum class _Compare_ord : _Compare_t { less = -1, greater = 1 };
enum class _Compare_ncmp : _Compare_t { unordered = -128 };
_EXPORT_STD struct partial_ordering {
static const partial_ordering less;
static const partial_ordering equivalent;
static const partial_ordering greater;
static const partial_ordering unordered;
_NODISCARD friend constexpr bool operator==(const partial_ordering _Val, _Literal_zero) noexcept {
return _Val._Value == 0;
}
_NODISCARD friend constexpr bool operator==(partial_ordering, partial_ordering) noexcept = default;
_NODISCARD friend constexpr bool operator<(const partial_ordering _Val, _Literal_zero) noexcept {
return _Val._Value == static_cast<_Compare_t>(_Compare_ord::less);
}
_NODISCARD friend constexpr bool operator>(const partial_ordering _Val, _Literal_zero) noexcept {
return _Val._Value > 0;
}
_NODISCARD friend constexpr bool operator<=(const partial_ordering _Val, _Literal_zero) noexcept {
// The stored value is either less (0xff), equivalent (0x00), greater (0x01), or unordered (0x80).
// Subtracting from 0 produces either 0x01, 0x00, 0xff, or 0x80. The result is greater than or equal to 0
// if and only if the initial value was less or equivalent, for which we want to return true.
return static_cast<signed char>(0 - static_cast<unsigned int>(_Val._Value)) >= 0;
}
_NODISCARD friend constexpr bool operator>=(const partial_ordering _Val, _Literal_zero) noexcept {
return _Val._Value >= 0;
}
_NODISCARD friend constexpr bool operator<(_Literal_zero, const partial_ordering _Val) noexcept {
return _Val > 0;
}
_NODISCARD friend constexpr bool operator>(_Literal_zero, const partial_ordering _Val) noexcept {
return _Val < 0;
}
_NODISCARD friend constexpr bool operator<=(_Literal_zero, const partial_ordering _Val) noexcept {
return _Val >= 0;
}
_NODISCARD friend constexpr bool operator>=(_Literal_zero, const partial_ordering _Val) noexcept {
return _Val <= 0;
}
_NODISCARD friend constexpr partial_ordering operator<=>(const partial_ordering _Val, _Literal_zero) noexcept {
return _Val;
}
_NODISCARD friend constexpr partial_ordering operator<=>(_Literal_zero, const partial_ordering _Val) noexcept {
// The stored value is either less (0xff), equivalent (0x00), greater (0x01), or unordered (0x80).
// Subtracting from 0 produces either 0x01, 0x00, 0xff, or 0x80. Note that the effect is to
// exchange less for greater (and vice versa), while leaving equivalent and unordered unchanged.
return {static_cast<_Compare_t>(0 - static_cast<unsigned int>(_Val._Value))};
}
_Compare_t _Value;
};
// 编译期初始化预定义的值,内联变量
inline constexpr partial_ordering partial_ordering::less{static_cast<_Compare_t>(_Compare_ord::less)};
inline constexpr partial_ordering partial_ordering::equivalent{static_cast<_Compare_t>(_Compare_eq::equivalent)};
inline constexpr partial_ordering partial_ordering::greater{static_cast<_Compare_t>(_Compare_ord::greater)};
inline constexpr partial_ordering partial_ordering::unordered{static_cast<_Compare_t>(_Compare_ncmp::unordered)};
_EXPORT_STD struct weak_ordering {
static const weak_ordering less;
static const weak_ordering equivalent;
static const weak_ordering greater;
constexpr operator partial_ordering() const noexcept {
return {static_cast<_Compare_t>(_Value)};
}
_NODISCARD friend constexpr bool operator==(const weak_ordering _Val, _Literal_zero) noexcept {
return _Val._Value == 0;
}
_NODISCARD friend constexpr bool operator==(weak_ordering, weak_ordering) noexcept = default;
_NODISCARD friend constexpr bool operator<(const weak_ordering _Val, _Literal_zero) noexcept {
return _Val._Value < 0;
}
_NODISCARD friend constexpr bool operator>(const weak_ordering _Val, _Literal_zero) noexcept {
return _Val._Value > 0;
}
_NODISCARD friend constexpr bool operator<=(const weak_ordering _Val, _Literal_zero) noexcept {
return _Val._Value <= 0;
}
_NODISCARD friend constexpr bool operator>=(const weak_ordering _Val, _Literal_zero) noexcept {
return _Val._Value >= 0;
}
_NODISCARD friend constexpr bool operator<(_Literal_zero, const weak_ordering _Val) noexcept {
return _Val > 0;
}
_NODISCARD friend constexpr bool operator>(_Literal_zero, const weak_ordering _Val) noexcept {
return _Val < 0;
}
_NODISCARD friend constexpr bool operator<=(_Literal_zero, const weak_ordering _Val) noexcept {
return _Val >= 0;
}
_NODISCARD friend constexpr bool operator>=(_Literal_zero, const weak_ordering _Val) noexcept {
return _Val <= 0;
}
_NODISCARD friend constexpr weak_ordering operator<=>(const weak_ordering _Val, _Literal_zero) noexcept {
return _Val;
}
_NODISCARD friend constexpr weak_ordering operator<=>(_Literal_zero, const weak_ordering _Val) noexcept {
return {static_cast<_Compare_t>(-_Val._Value)};
}
_Compare_t _Value;
};
inline constexpr weak_ordering weak_ordering::less{static_cast<_Compare_t>(_Compare_ord::less)};
inline constexpr weak_ordering weak_ordering::equivalent{static_cast<_Compare_t>(_Compare_eq::equivalent)};
inline constexpr weak_ordering weak_ordering::greater{static_cast<_Compare_t>(_Compare_ord::greater)};
_EXPORT_STD struct strong_ordering {
static const strong_ordering less;
static const strong_ordering equal;
static const strong_ordering equivalent;
static const strong_ordering greater;
constexpr operator partial_ordering() const noexcept {
return {static_cast<_Compare_t>(_Value)};
}
constexpr operator weak_ordering() const noexcept {
return {static_cast<_Compare_t>(_Value)};
}
_NODISCARD friend constexpr bool operator==(const strong_ordering _Val, _Literal_zero) noexcept {
return _Val._Value == 0;
}
_NODISCARD friend constexpr bool operator==(strong_ordering, strong_ordering) noexcept = default;
_NODISCARD friend constexpr bool operator<(const strong_ordering _Val, _Literal_zero) noexcept {
return _Val._Value < 0;
}
_NODISCARD friend constexpr bool operator>(const strong_ordering _Val, _Literal_zero) noexcept {
return _Val._Value > 0;
}
_NODISCARD friend constexpr bool operator<=(const strong_ordering _Val, _Literal_zero) noexcept {
return _Val._Value <= 0;
}
_NODISCARD friend constexpr bool operator>=(const strong_ordering _Val, _Literal_zero) noexcept {
return _Val._Value >= 0;
}
_NODISCARD friend constexpr bool operator<(_Literal_zero, const strong_ordering _Val) noexcept {
return _Val > 0;
}
_NODISCARD friend constexpr bool operator>(_Literal_zero, const strong_ordering _Val) noexcept {
return _Val < 0;
}
_NODISCARD friend constexpr bool operator<=(_Literal_zero, const strong_ordering _Val) noexcept {
return _Val >= 0;
}
_NODISCARD friend constexpr bool operator>=(_Literal_zero, const strong_ordering _Val) noexcept {
return _Val <= 0;
}
_NODISCARD friend constexpr strong_ordering operator<=>(const strong_ordering _Val, _Literal_zero) noexcept {
return _Val;
}
_NODISCARD friend constexpr strong_ordering operator<=>(_Literal_zero, const strong_ordering _Val) noexcept {
return {static_cast<_Compare_t>(-_Val._Value)};
}
_Compare_t _Value;
};
inline constexpr strong_ordering strong_ordering::less{static_cast<_Compare_t>(_Compare_ord::less)};
inline constexpr strong_ordering strong_ordering::equal{static_cast<_Compare_t>(_Compare_eq::equal)};
inline constexpr strong_ordering strong_ordering::equivalent{static_cast<_Compare_t>(_Compare_eq::equivalent)};
inline constexpr strong_ordering strong_ordering::greater{static_cast<_Compare_t>(_Compare_ord::greater)};
_EXPORT_STD _NODISCARD constexpr bool is_eq(const partial_ordering _Comp) noexcept {
return _Comp == 0;
}
_EXPORT_STD _NODISCARD constexpr bool is_neq(const partial_ordering _Comp) noexcept {
return _Comp != 0;
}
_EXPORT_STD _NODISCARD constexpr bool is_lt(const partial_ordering _Comp) noexcept {
return _Comp < 0;
}
_EXPORT_STD _NODISCARD constexpr bool is_lteq(const partial_ordering _Comp) noexcept {
return _Comp <= 0;
}
_EXPORT_STD _NODISCARD constexpr bool is_gt(const partial_ordering _Comp) noexcept {
return _Comp > 0;
}
_EXPORT_STD _NODISCARD constexpr bool is_gteq(const partial_ordering _Comp) noexcept {
return _Comp >= 0;
}
enum _Comparison_category : unsigned char {
_Comparison_category_none = 1,
_Comparison_category_partial = 2,
_Comparison_category_weak = 4,
_Comparison_category_strong = 0,
};
template <class... _Types>
constexpr unsigned char _Classify_category =
_Comparison_category{(_Classify_category<_Types> | ... | _Comparison_category_strong)};
template <class _Ty>
constexpr unsigned char _Classify_category<_Ty> = _Comparison_category_none;
template <>
inline constexpr unsigned char _Classify_category<partial_ordering> = _Comparison_category_partial;
template <>
inline constexpr unsigned char _Classify_category<weak_ordering> = _Comparison_category_weak;
template <>
inline constexpr unsigned char _Classify_category<strong_ordering> = _Comparison_category_strong;
_EXPORT_STD template <class... _Types>
using common_comparison_category_t =
conditional_t<(_Classify_category<_Types...> & _Comparison_category_none) != 0, void,
conditional_t<(_Classify_category<_Types...> & _Comparison_category_partial) != 0, partial_ordering,
conditional_t<(_Classify_category<_Types...> & _Comparison_category_weak) != 0, weak_ordering,
strong_ordering>>>;
_EXPORT_STD template <class... _Types>
struct common_comparison_category {
using type = common_comparison_category_t<_Types...>;
};
template <class _Ty, class _Cat>
concept _Compares_as = same_as<common_comparison_category_t<_Ty, _Cat>, _Cat>;
_EXPORT_STD template <class _Ty, class _Cat = partial_ordering>
concept three_way_comparable = _Half_equality_comparable<_Ty, _Ty> && _Half_ordered<_Ty, _Ty>
&& requires(const remove_reference_t<_Ty>& __a, const remove_reference_t<_Ty>& __b) {
{ __a <=> __b } -> _Compares_as<_Cat>;
};
_EXPORT_STD template <class _Ty1, class _Ty2, class _Cat = partial_ordering>
concept three_way_comparable_with =
three_way_comparable<_Ty1, _Cat> && three_way_comparable<_Ty2, _Cat>
#if _HAS_CXX23
&& _Comparison_common_type_with<_Ty1, _Ty2>
#else // ^^^ _HAS_CXX23 / !_HAS_CXX23 vvv
&& common_reference_with<const remove_reference_t<_Ty1>&, const remove_reference_t<_Ty2>&>
#endif // ^^^ !_HAS_CXX23 ^^^
&& three_way_comparable<common_reference_t<const remove_reference_t<_Ty1>&, const remove_reference_t<_Ty2>&>, _Cat>
&& _Weakly_equality_comparable_with<_Ty1, _Ty2> && _Partially_ordered_with<_Ty1, _Ty2>
&& requires(const remove_reference_t<_Ty1>& __t, const remove_reference_t<_Ty2>& __u) {
{ __t <=> __u } -> _Compares_as<_Cat>;
{ __u <=> __t } -> _Compares_as<_Cat>;
};
_EXPORT_STD template <class _Ty1, class _Ty2 = _Ty1>
using compare_three_way_result_t =
decltype(_STD declval<const remove_reference_t<_Ty1>&>() <=> _STD declval<const remove_reference_t<_Ty2>&>());
_EXPORT_STD template <class _Ty1, class _Ty2 = _Ty1>
struct compare_three_way_result {};
template <class _Ty1, class _Ty2>
requires requires { typename compare_three_way_result_t<_Ty1, _Ty2>; }
struct compare_three_way_result<_Ty1, _Ty2> {
using type = compare_three_way_result_t<_Ty1, _Ty2>;
};
_EXPORT_STD struct compare_three_way {
template <class _Ty1, class _Ty2>
requires three_way_comparable_with<_Ty1, _Ty2>
_NODISCARD constexpr auto operator()(_Ty1&& _Left, _Ty2&& _Right) const
noexcept(noexcept(_STD forward<_Ty1>(_Left) <=> _STD forward<_Ty2>(_Right))) /* strengthened */ {
return _STD forward<_Ty1>(_Left) <=> _STD forward<_Ty2>(_Right);
}
using is_transparent = int;
};
struct _Synth_three_way {
template <class _Ty1, class _Ty2>
_NODISCARD _STATIC_CALL_OPERATOR constexpr auto operator()(
const _Ty1& _Left, const _Ty2& _Right) _CONST_CALL_OPERATOR
requires requires {
{ _Left < _Right } -> _Boolean_testable;
{ _Right < _Left } -> _Boolean_testable;
}
{
if constexpr (three_way_comparable_with<_Ty1, _Ty2>) {
return _Left <=> _Right;
} else {
if (_Left < _Right) {
return weak_ordering::less;
} else if (_Right < _Left) {
return weak_ordering::greater;
} else {
return weak_ordering::equivalent;
}
}
}
};
template <class _Ty1, class _Ty2 = _Ty1>
using _Synth_three_way_result = decltype(_Synth_three_way{}(_STD declval<_Ty1&>(), _STD declval<_Ty2&>()));
// Note: The following CPOs are passing arguments as lvalues; see GH-1374.
namespace _Strong_order {
#if defined(__clang__) || defined(__EDG__) // TRANSITION, VSO-1681199
void strong_order() = delete; // Block unqualified name lookup
#else // ^^^ no workaround / workaround vvv
void strong_order();
#endif // ^^^ workaround ^^^
template <class _Ty1, class _Ty2>
concept _Has_ADL = requires(_Ty1& _Left, _Ty2& _Right) {
static_cast<strong_ordering>(strong_order(_Left, _Right)); // intentional ADL
};
template <class _Ty1, class _Ty2>
concept _Can_compare_three_way =
requires(_Ty1& _Left, _Ty2& _Right) { static_cast<strong_ordering>(compare_three_way{}(_Left, _Right)); };
class _Cpo {
private:
enum class _St { _None, _Adl, _Floating, _Three };
template <class _Ty1, class _Ty2>
_NODISCARD static consteval _Choice_t<_St> _Choose() noexcept {
if constexpr (!same_as<decay_t<_Ty1>, decay_t<_Ty2>>) {
return {_St::_None};
} else if constexpr (_Has_ADL<_Ty1, _Ty2>) {
return {_St::_Adl, noexcept(static_cast<strong_ordering>(
strong_order(_STD declval<_Ty1&>(), _STD declval<_Ty2&>())))}; // intentional ADL
} else if constexpr (floating_point<decay_t<_Ty1>>) {
return {_St::_Floating, true};
} else if constexpr (_Can_compare_three_way<_Ty1, _Ty2>) {
return {_St::_Three, noexcept(static_cast<strong_ordering>(
compare_three_way{}(_STD declval<_Ty1&>(), _STD declval<_Ty2&>())))};
} else {
return {_St::_None};
}
}
template <class _Ty1, class _Ty2>
static constexpr _Choice_t<_St> _Choice = _Choose<_Ty1, _Ty2>();
public:
template <class _Ty1, class _Ty2>
requires (_Choice<_Ty1&, _Ty2&>._Strategy != _St::_None)
_NODISCARD _STATIC_CALL_OPERATOR constexpr strong_ordering operator()(
_Ty1&& _Left, _Ty2&& _Right) _CONST_CALL_OPERATOR noexcept(_Choice<_Ty1&, _Ty2&>._No_throw) {
constexpr _St _Strat = _Choice<_Ty1&, _Ty2&>._Strategy;
if constexpr (_Strat == _St::_Adl) {
return static_cast<strong_ordering>(strong_order(_Left, _Right)); // intentional ADL
} else if constexpr (_Strat == _St::_Floating) {
using _Floating_type = decay_t<_Ty1>;
using _Traits = _Floating_type_traits<_Floating_type>;
using _Uint_type = _Traits::_Uint_type;
using _Sint_type = make_signed_t<_Uint_type>;
const auto _Left_uint = _Bit_cast<_Uint_type>(_Left);
const auto _Right_uint = _Bit_cast<_Uint_type>(_Right);
// 1. Ultra-fast path: equal representations are equal.
if (_Left_uint == _Right_uint) {
return strong_ordering::equal;
}
// 2. Examine the sign bits.
const _Uint_type _Left_shifted_sign = _Left_uint & _Traits::_Shifted_sign_mask;
const _Uint_type _Right_shifted_sign = _Right_uint & _Traits::_Shifted_sign_mask;
// 3. Interpret floating-point bit patterns as sign magnitude representations of integers,
// and then transform them into ones' complement representation.
// (Ones' complement representations of positive zero and negative zero are different.)
const _Uint_type _Left_sign = _Left_shifted_sign >> _Traits::_Sign_shift;
const _Uint_type _Right_sign = _Right_shifted_sign >> _Traits::_Sign_shift;
const _Uint_type _Left_xor = _Left_shifted_sign - _Left_sign;
const _Uint_type _Right_xor = _Right_shifted_sign - _Right_sign;
const _Uint_type _Left_ones_complement_uint = _Left_uint ^ _Left_xor;
const _Uint_type _Right_ones_complement_uint = _Right_uint ^ _Right_xor;
const auto _Left_ones_complement = static_cast<_Sint_type>(_Left_ones_complement_uint);
const auto _Right_ones_complement = static_cast<_Sint_type>(_Right_ones_complement_uint);
// 4. Perform the final comparison.
return _Left_ones_complement <=> _Right_ones_complement;
} else if constexpr (_Strat == _St::_Three) {
return static_cast<strong_ordering>(compare_three_way{}(_Left, _Right));
} else {
_STL_INTERNAL_STATIC_ASSERT(false); // unexpected strategy
}
}
};
} // namespace _Strong_order
inline namespace _Cpos {
_EXPORT_STD inline constexpr _Strong_order::_Cpo strong_order;
}
namespace _Weak_order {
#if defined(__clang__) || defined(__EDG__) // TRANSITION, VSO-1681199
void weak_order() = delete; // Block unqualified name lookup
#else // ^^^ no workaround / workaround vvv
void weak_order();
#endif // ^^^ workaround ^^^
template <class _Ty1, class _Ty2>
concept _Has_ADL = requires(_Ty1& _Left, _Ty2& _Right) {
static_cast<weak_ordering>(weak_order(_Left, _Right)); // intentional ADL
};
template <class _Ty1, class _Ty2>
concept _Can_compare_three_way =
requires(_Ty1& _Left, _Ty2& _Right) { static_cast<weak_ordering>(compare_three_way{}(_Left, _Right)); };
// Throughput optimization: attempting to use _STD strong_order will always select ADL strong_order here.
#if defined(__clang__) || defined(__EDG__) // TRANSITION, VSO-1681199
void strong_order() = delete; // Block unqualified name lookup
#else // ^^^ no workaround / workaround vvv
void strong_order();
#endif // ^^^ workaround ^^^
class _Cpo {
private:
enum class _St { _None, _Adl, _Floating, _Three, _Strong };
template <class _Ty1, class _Ty2>
_NODISCARD static consteval _Choice_t<_St> _Choose() noexcept {
if constexpr (!same_as<decay_t<_Ty1>, decay_t<_Ty2>>) {
return {_St::_None};
} else if constexpr (_Has_ADL<_Ty1, _Ty2>) {
return {_St::_Adl, noexcept(static_cast<weak_ordering>(
weak_order(_STD declval<_Ty1&>(), _STD declval<_Ty2&>())))}; // intentional ADL
} else if constexpr (floating_point<decay_t<_Ty1>>) {
return {_St::_Floating, true};
} else if constexpr (_Can_compare_three_way<_Ty1, _Ty2>) {
return {_St::_Three, noexcept(static_cast<weak_ordering>(
compare_three_way{}(_STD declval<_Ty1&>(), _STD declval<_Ty2&>())))};
} else if constexpr (_Strong_order::_Has_ADL<_Ty1, _Ty2>) {
// throughput optimization (see above):
return {_St::_Strong, noexcept(static_cast<weak_ordering>(static_cast<strong_ordering>(strong_order(
_STD declval<_Ty1&>(), _STD declval<_Ty2&>()))))}; // intentional ADL
} else {
return {_St::_None};
}
}
template <class _Ty1, class _Ty2>
static constexpr _Choice_t<_St> _Choice = _Choose<_Ty1, _Ty2>();
public:
template <class _Ty1, class _Ty2>
requires (_Choice<_Ty1&, _Ty2&>._Strategy != _St::_None)
_NODISCARD _STATIC_CALL_OPERATOR constexpr weak_ordering operator()(
_Ty1&& _Left, _Ty2&& _Right) _CONST_CALL_OPERATOR noexcept(_Choice<_Ty1&, _Ty2&>._No_throw) {
constexpr _St _Strat = _Choice<_Ty1&, _Ty2&>._Strategy;
if constexpr (_Strat == _St::_Adl) {
return static_cast<weak_ordering>(weak_order(_Left, _Right)); // intentional ADL
} else if constexpr (_Strat == _St::_Floating) {
using _Floating_type = decay_t<_Ty1>;
using _Traits = _Floating_type_traits<_Floating_type>;
using _Uint_type = _Traits::_Uint_type;
using _Sint_type = make_signed_t<_Uint_type>;
auto _Left_uint = _Bit_cast<_Uint_type>(_Left);
auto _Right_uint = _Bit_cast<_Uint_type>(_Right);
// 1. Ultra-fast path: equal representations are equivalent.
if (_Left_uint == _Right_uint) {
return weak_ordering::equivalent;
}
// 2. Examine the sign bits.
const _Uint_type _Left_shifted_sign = _Left_uint & _Traits::_Shifted_sign_mask;
const _Uint_type _Right_shifted_sign = _Right_uint & _Traits::_Shifted_sign_mask;
// 3. Fold all NaN values together.
// (The fact that _Infinity_plus_one represents a signaling NaN is irrelevant here.)
constexpr _Uint_type _Infinity_plus_one = _Traits::_Shifted_exponent_mask + 1;
const _Uint_type _Left_magnitude = _Left_uint & ~_Traits::_Shifted_sign_mask;
const _Uint_type _Right_magnitude = _Right_uint & ~_Traits::_Shifted_sign_mask;
if (_Left_magnitude > _Infinity_plus_one) {
_Left_uint = _Left_shifted_sign | _Infinity_plus_one;
}
if (_Right_magnitude > _Infinity_plus_one) {
_Right_uint = _Right_shifted_sign | _Infinity_plus_one;
}
// 4. Interpret floating-point bit patterns as sign magnitude representations of integers,
// and then transform them into two's complement representation.
// (Two's complement representations of positive zero and negative zero are the same.)
const _Uint_type _Left_sign = _Left_shifted_sign >> _Traits::_Sign_shift;
const _Uint_type _Right_sign = _Right_shifted_sign >> _Traits::_Sign_shift;
const _Uint_type _Left_xor = _Left_shifted_sign - _Left_sign;
const _Uint_type _Right_xor = _Right_shifted_sign - _Right_sign;
const _Uint_type _Left_twos_complement_uint = (_Left_uint ^ _Left_xor) + _Left_sign;
const _Uint_type _Right_twos_complement_uint = (_Right_uint ^ _Right_xor) + _Right_sign;
const auto _Left_twos_complement = static_cast<_Sint_type>(_Left_twos_complement_uint);
const auto _Right_twos_complement = static_cast<_Sint_type>(_Right_twos_complement_uint);
// 5. Perform the final comparison.
return static_cast<weak_ordering>(_Left_twos_complement <=> _Right_twos_complement);
} else if constexpr (_Strat == _St::_Three) {
return static_cast<weak_ordering>(compare_three_way{}(_Left, _Right));
} else if constexpr (_Strat == _St::_Strong) {
// throughput optimization (see above):
return static_cast<weak_ordering>(
static_cast<strong_ordering>(strong_order(_Left, _Right))); // intentional ADL
} else {
_STL_INTERNAL_STATIC_ASSERT(false); // unexpected strategy
}
}
};
} // namespace _Weak_order
inline namespace _Cpos {
_EXPORT_STD inline constexpr _Weak_order::_Cpo weak_order;
}
namespace _Partial_order {
#if defined(__clang__) || defined(__EDG__) // TRANSITION, VSO-1681199
void partial_order() = delete; // Block unqualified name lookup
#else // ^^^ no workaround / workaround vvv
void partial_order();
#endif // ^^^ workaround ^^^
template <class _Ty1, class _Ty2>
concept _Has_ADL = requires(_Ty1& _Left, _Ty2& _Right) {
static_cast<partial_ordering>(partial_order(_Left, _Right)); // intentional ADL
};
template <class _Ty1, class _Ty2>
concept _Can_compare_three_way =
requires(_Ty1& _Left, _Ty2& _Right) { static_cast<partial_ordering>(compare_three_way{}(_Left, _Right)); };
// Throughput optimization: attempting to use _STD weak_order
// will attempt to select ADL weak_order, followed by ADL strong_order, here.
#if defined(__clang__) || defined(__EDG__) // TRANSITION, VSO-1681199
void weak_order() = delete; // Block unqualified name lookup
void strong_order() = delete; // Block unqualified name lookup
#else // ^^^ no workaround / workaround vvv
void weak_order();
void strong_order();
#endif // ^^^ workaround ^^^
class _Cpo {
private:
enum class _St { _None, _Adl, _Three, _Weak, _Strong };
template <class _Ty1, class _Ty2>
_NODISCARD static consteval _Choice_t<_St> _Choose() noexcept {
if constexpr (!same_as<decay_t<_Ty1>, decay_t<_Ty2>>) {
return {_St::_None};
} else if constexpr (_Has_ADL<_Ty1, _Ty2>) {
return {_St::_Adl, noexcept(static_cast<partial_ordering>(partial_order(
_STD declval<_Ty1&>(), _STD declval<_Ty2&>())))}; // intentional ADL
} else if constexpr (_Can_compare_three_way<_Ty1, _Ty2>) {
return {_St::_Three, noexcept(static_cast<partial_ordering>(
compare_three_way{}(_STD declval<_Ty1&>(), _STD declval<_Ty2&>())))};
} else if constexpr (_Weak_order::_Has_ADL<_Ty1, _Ty2>) {
// throughput optimization (see above):
return {_St::_Weak, noexcept(static_cast<partial_ordering>(static_cast<weak_ordering>(
weak_order(_STD declval<_Ty1&>(), _STD declval<_Ty2&>()))))}; // intentional ADL
} else if constexpr (_Strong_order::_Has_ADL<_Ty1, _Ty2>) {
// throughput optimization (see above):
return {_St::_Strong, noexcept(static_cast<partial_ordering>(static_cast<strong_ordering>(strong_order(
_STD declval<_Ty1&>(), _STD declval<_Ty2&>()))))}; // intentional ADL
} else {
return {_St::_None};
}
}
template <class _Ty1, class _Ty2>
static constexpr _Choice_t<_St> _Choice = _Choose<_Ty1, _Ty2>();
public:
template <class _Ty1, class _Ty2>
requires (_Choice<_Ty1&, _Ty2&>._Strategy != _St::_None)
_NODISCARD _STATIC_CALL_OPERATOR constexpr partial_ordering operator()(
_Ty1&& _Left, _Ty2&& _Right) _CONST_CALL_OPERATOR noexcept(_Choice<_Ty1&, _Ty2&>._No_throw) {
constexpr _St _Strat = _Choice<_Ty1&, _Ty2&>._Strategy;
if constexpr (_Strat == _St::_Adl) {
return static_cast<partial_ordering>(/* ADL */ partial_order(_Left, _Right));
} else if constexpr (_Strat == _St::_Three) {
return static_cast<partial_ordering>(compare_three_way{}(_Left, _Right));
} else if constexpr (_Strat == _St::_Weak) {
// throughput optimization (see above):
return static_cast<partial_ordering>(
static_cast<weak_ordering>(weak_order(_Left, _Right))); // intentional ADL
} else if constexpr (_Strat == _St::_Strong) {
// throughput optimization (see above):
return static_cast<partial_ordering>(
static_cast<strong_ordering>(strong_order(_Left, _Right))); // intentional ADL
} else {
_STL_INTERNAL_STATIC_ASSERT(false); // unexpected strategy
}
}
};
} // namespace _Partial_order
inline namespace _Cpos {
_EXPORT_STD inline constexpr _Partial_order::_Cpo partial_order;
}
template <class _Ty1, class _Ty2>
concept _Can_fallback_eq_lt = requires(_Ty1& _Left, _Ty2& _Right) {
{ _Left == _Right } -> _Boolean_testable;
{ _Left < _Right } -> _Boolean_testable;
};
template <class _Ty1, class _Ty2>
concept _Can_strong_order = requires(_Ty1& _Left, _Ty2& _Right) { _STD strong_order(_Left, _Right); };
namespace _Compare_strong_order_fallback {
class _Cpo {
private:
enum class _St { _None, _Strong, _Fallback };
template <class _Ty1, class _Ty2>
_NODISCARD static consteval _Choice_t<_St> _Choose() noexcept {
if constexpr (!same_as<decay_t<_Ty1>, decay_t<_Ty2>>) {
return {_St::_None};
} else if constexpr (_Can_strong_order<_Ty1, _Ty2>) {
return {_St::_Strong, noexcept(_STD strong_order(_STD declval<_Ty1&>(), _STD declval<_Ty2&>()))};
} else if constexpr (_Can_fallback_eq_lt<_Ty1, _Ty2>) {
return {_St::_Fallback,
noexcept(_STD declval<_Ty1&>() == _STD declval<_Ty2&>() ? strong_ordering::equal
: _STD declval<_Ty1&>() < _STD declval<_Ty2&>() ? strong_ordering::less
: strong_ordering::greater)};
} else {
return {_St::_None};
}
}
template <class _Ty1, class _Ty2>
static constexpr _Choice_t<_St> _Choice = _Choose<_Ty1, _Ty2>();
public:
template <class _Ty1, class _Ty2>
requires (_Choice<_Ty1&, _Ty2&>._Strategy != _St::_None)
_NODISCARD _STATIC_CALL_OPERATOR constexpr strong_ordering operator()(
_Ty1&& _Left, _Ty2&& _Right) _CONST_CALL_OPERATOR noexcept(_Choice<_Ty1&, _Ty2&>._No_throw) {
constexpr _St _Strat = _Choice<_Ty1&, _Ty2&>._Strategy;
if constexpr (_Strat == _St::_Strong) {
return _STD strong_order(_Left, _Right);
} else if constexpr (_Strat == _St::_Fallback) {
return _Left == _Right ? strong_ordering::equal
: _Left < _Right ? strong_ordering::less
: strong_ordering::greater;
} else {
_STL_INTERNAL_STATIC_ASSERT(false); // unexpected strategy
}
}
};
} // namespace _Compare_strong_order_fallback
inline namespace _Cpos {
_EXPORT_STD inline constexpr _Compare_strong_order_fallback::_Cpo compare_strong_order_fallback;
}
template <class _Ty1, class _Ty2>
concept _Can_weak_order = requires(_Ty1& _Left, _Ty2& _Right) { _STD weak_order(_Left, _Right); };
namespace _Compare_weak_order_fallback {
class _Cpo {
private:
enum class _St { _None, _Weak, _Fallback };
template <class _Ty1, class _Ty2>
_NODISCARD static consteval _Choice_t<_St> _Choose() noexcept {
if constexpr (!same_as<decay_t<_Ty1>, decay_t<_Ty2>>) {
return {_St::_None};
} else if constexpr (_Can_weak_order<_Ty1, _Ty2>) {
return {_St::_Weak, noexcept(_STD weak_order(_STD declval<_Ty1&>(), _STD declval<_Ty2&>()))};
} else if constexpr (_Can_fallback_eq_lt<_Ty1, _Ty2>) {
return {
_St::_Fallback, noexcept(_STD declval<_Ty1&>() == _STD declval<_Ty2&>() ? weak_ordering::equivalent
: _STD declval<_Ty1&>() < _STD declval<_Ty2&>() ? weak_ordering::less
: weak_ordering::greater)};
} else {
return {_St::_None};
}
}
template <class _Ty1, class _Ty2>
static constexpr _Choice_t<_St> _Choice = _Choose<_Ty1, _Ty2>();
public:
template <class _Ty1, class _Ty2>
requires (_Choice<_Ty1&, _Ty2&>._Strategy != _St::_None)
_NODISCARD _STATIC_CALL_OPERATOR constexpr weak_ordering operator()(
_Ty1&& _Left, _Ty2&& _Right) _CONST_CALL_OPERATOR noexcept(_Choice<_Ty1&, _Ty2&>._No_throw) {
constexpr _St _Strat = _Choice<_Ty1&, _Ty2&>._Strategy;
if constexpr (_Strat == _St::_Weak) {
return _STD weak_order(_Left, _Right);
} else if constexpr (_Strat == _St::_Fallback) {
return _Left == _Right ? weak_ordering::equivalent
: _Left < _Right ? weak_ordering::less
: weak_ordering::greater;
} else {
_STL_INTERNAL_STATIC_ASSERT(false); // unexpected strategy
}
}
};
} // namespace _Compare_weak_order_fallback
inline namespace _Cpos {
_EXPORT_STD inline constexpr _Compare_weak_order_fallback::_Cpo compare_weak_order_fallback;
}
template <class _Ty1, class _Ty2>
concept _Can_partial_order = requires(_Ty1& _Left, _Ty2& _Right) { _STD partial_order(_Left, _Right); };
namespace _Compare_partial_order_fallback {
template <class _Ty1, class _Ty2>
concept _Can_fallback_eq_lt_twice = requires(_Ty1& _Left, _Ty2& _Right) {
{ _Left == _Right } -> _Boolean_testable;
{ _Left < _Right } -> _Boolean_testable;
{ _Right < _Left } -> _Boolean_testable;
};
class _Cpo {
private:
enum class _St { _None, _Partial, _Fallback };
template <class _Ty1, class _Ty2>
_NODISCARD static consteval _Choice_t<_St> _Choose() noexcept {
if constexpr (!same_as<decay_t<_Ty1>, decay_t<_Ty2>>) {
return {_St::_None};
} else if constexpr (_Can_partial_order<_Ty1, _Ty2>) {
return {_St::_Partial, noexcept(_STD partial_order(_STD declval<_Ty1&>(), _STD declval<_Ty2&>()))};
} else if constexpr (_Can_fallback_eq_lt_twice<_Ty1, _Ty2>) {
return {_St::_Fallback,
noexcept(_STD declval<_Ty1&>() == _STD declval<_Ty2&>() ? partial_ordering::equivalent
: _STD declval<_Ty1&>() < _STD declval<_Ty2&>() ? partial_ordering::less
: _STD declval<_Ty2&>() < _STD declval<_Ty1&>() ? partial_ordering::greater
: partial_ordering::unordered)};
} else {
return {_St::_None};
}
}
template <class _Ty1, class _Ty2>
static constexpr _Choice_t<_St> _Choice = _Choose<_Ty1, _Ty2>();
public:
template <class _Ty1, class _Ty2>
requires (_Choice<_Ty1&, _Ty2&>._Strategy != _St::_None)
_NODISCARD _STATIC_CALL_OPERATOR constexpr partial_ordering operator()(
_Ty1&& _Left, _Ty2&& _Right) _CONST_CALL_OPERATOR noexcept(_Choice<_Ty1&, _Ty2&>._No_throw) {
constexpr _St _Strat = _Choice<_Ty1&, _Ty2&>._Strategy;
if constexpr (_Strat == _St::_Partial) {
return _STD partial_order(_Left, _Right);
} else if constexpr (_Strat == _St::_Fallback) {
return _Left == _Right ? partial_ordering::equivalent
: _Left < _Right ? partial_ordering::less
: _Right < _Left ? partial_ordering::greater
: partial_ordering::unordered;
} else {
_STL_INTERNAL_STATIC_ASSERT(false); // unexpected strategy
}
}
};
} // namespace _Compare_partial_order_fallback
inline namespace _Cpos {
_EXPORT_STD inline constexpr _Compare_partial_order_fallback::_Cpo compare_partial_order_fallback;
}
_STD_END
#pragma pop_macro("new")
_STL_RESTORE_CLANG_WARNINGS
#pragma warning(pop)
#pragma pack(pop)
#endif // _HAS_CXX20
#endif // _STL_COMPILER_PREPROCESSOR
#endif // _COMPARE_