本地文档问答系统RAG全流程详解

系统需要 4 个阶段:


① 文件上传(Upload)

用户把 PDF、DOCX、TXT 等文件上传到 Django 后端。

后端做的事情:

  1. 接收文件 (request.FILES["file"])

  2. 保存到服务器本地目录:

    复制代码
    /your_project/uploads/
  3. 调用 process_file() 解析文件内容

    • PDF 用 PyPDF2

    • DOCX 用 python-docx

    • TXT 用 open()

  4. 把解析出的文本送入向量数据库(如 ChromaDB)

你现在的问题是 process_file 没有调用 → 必须在上传成功后调用它。


② 文档拆分 + 向量化(Embed)

读取到的文档要:

✔ 拆分成小段(chunk)

1 段大约 300~500 字。

✔ 每段生成 embedding 向量

使用:

复制代码
model = SentenceTransformer("all-MiniLM-L6-v2")

✔ 存储到 Chroma DB

格式类似:

segment_id text embedding
doc1-1 "第一段 ..." [0.21, ...]
doc1-2 "第二段 ..." [...]

你现在代码中已经初始化好了 Chroma,只需要在上传文件解析后调用:

复制代码
collection.add(
    documents=[chunk1, chunk2, ...],
    ids=["doc1-1", "doc1-2", ...]
)

③ 用户输入问题(Query)

前端发 POST 请求给:

复制代码
/send_message/

后端做两件事:

✔ 3.1 语义搜索(Retrieve)

例如:

复制代码
results = collection.query(query_texts=[user_question], n_results=3)

得到最相关的 2~3 条文档片段。

✔ 3.2 拼接上下文(Context)

复制代码
context = "\n".join(results["documents"][0])

④ 生成回答(Generate)

将用户原问题 + 文档上下文发给大模型:

Prompt 示意:

复制代码
你是一个图书问答助手。以下是从文档中检索的相关内容:

{context}

根据这些内容回答用户的问题:{query}

模型返回的 answer 发给前端。


🔥 整个系统流程图(简化)

复制代码
用户上传文件
       ↓
 Django后端接收文件
       ↓
   process_file()
       ↓
 文档拆分 + 向量化
       ↓
   存入 Chroma DB
       ↓
============================
         用户提问
============================
       ↓
   Retrieve(语义搜索)
       ↓
  返回最相关文档片段
       ↓
 拼接 Prompt + 文档
       ↓
   大模型生成回答
       ↓
  返回答案给前端

⭐ 为你总结成一句话:

上传文件 → 文档解析 → 向量数据库存储 → 用户提问 → 检索相关文档 → 大模型基于文档回答问题。

相关推荐
shangjian0072 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错2 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰2 小时前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
丝斯20113 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技6 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329726 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔8 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案8 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信8 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博10 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能