人形机器人WBC控制方法介绍

人形机器人 Whole-Body Control(WBC)控制方法介绍

1. 基本概念

Whole-Body Control(WBC)是一种基于任务优先级的实时全身运动与力控制框架,用于协调人形机器人多个自由度(DoF),同时满足运动学/动力学约束与多任务目标(如平衡、手部操作、足部接触等)。

其核心思想是:

在满足物理约束的前提下,通过分层优化或加权融合,使机器人同时完成多个控制任务。

典型应用场景包括:

  • 双足行走中的质心跟踪与ZMP稳定;
  • 手臂抓取物体的同时保持躯干平衡;
  • 抗外部扰动时的全身协调响应。
2. 系统建模基础

设机器人具有 n 个关节,广义坐标为 q ∈ ℝⁿ(通常包含基座6D位姿和关节角)。其前向运动学和动力学模型为:

  • 运动学:ẋ = J(q) · q̇
  • 动力学:M(q) · q̈ + h(q, q̇) = Sᵀτ + J_cᵀ · F

其中:

  • x 为任务空间变量(如手部位姿、质心位置等);
  • J(q) 为对应任务的雅可比矩阵;
  • M(q) 为质量矩阵;
  • h(q, q̇) 包含科里奥利力、离心力和重力项;
  • S 为关节选择矩阵(通常 S = [0₆ₓ₆ Iₙₓₙ]);
  • τ 为关节力矩;
  • F 为环境接触力(如足底GRF);
  • J_c 为接触点雅可比矩阵。
3. WBC 的典型实现方式
(1)分层任务优先级法(Hierarchical Quadratic Programming, HQP)

将控制任务按优先级排序(如 P₁ > P₂ > P₃),依次求解带约束的二次规划(QP)问题:

第 k 层优化问题

min ‖Jₖ q̈ − (ẍₖ^d − ḊJₖ q̇)‖²

s.t. Aᵢ q̈ ≤ bᵢ, ∀ i < k(高优先级任务的等效约束)

动力学约束、摩擦锥、关节限位等

其中 ẍₖ^d 为第 k 个任务的期望加速度。

优点:严格保证高优先级任务(如平衡)不被低优先级任务(如手势)干扰。

缺点:计算量大,需多层QP求解。

(2)加权融合法(Weighted QP)

将所有任务合并为单一目标函数:

min Σᵢ wᵢ · ‖Jᵢ q̈ − (ẍᵢ^d − ḊJᵢ q̇)‖²

s.t. M(q) q̈ + h = Sᵀτ + J_cᵀ F

F ∈ FrictionCone

τₘᵢₙ ≤ τ ≤ τₘₐₓ

q̈ₘᵢₙ ≤ q̈ ≤ q̈ₘₐₓ

其中 wᵢ 为任务权重,反映相对重要性。

优点:单次QP求解,效率高;

缺点:任务间存在耦合,可能牺牲关键任务性能。

4. 关键约束处理

WBC 必须显式处理以下物理约束:

  • 接触约束

    • 单向力:F_z ≥ 0(不能"吸附"地面);
    • 摩擦锥:√(Fₓ² + Fᵧ²) ≤ μ · F_z(μ 为摩擦系数)。
  • 执行器限制

    • 关节力矩:τₘᵢₙ ≤ τ ≤ τₘₐₓ;
    • 关节速度/加速度限幅。
  • 稳定性约束(可选):

    • ZMP 或 Capture Point 位于支撑多边形内;
    • 零力矩点(ZMP)计算:
      x_zmp = x_com − (z_com / g) · ẍ_com。
5. 控制流程(典型 WBC 循环)
  1. 感知输入:获取当前状态 q, q̇,接触状态(哪只脚接触),外部扰动估计;
  2. 任务定义:设定各任务目标(如 CoM 轨迹、手部位姿、头部朝向);
  3. 构建优化问题:根据 HQP 或加权 QP 形式建立目标函数与约束;
  4. 求解 QP:使用实时求解器(如 OSQP、qpOASES、eiquadprog)计算最优 q̈ 或 τ;
  5. 输出控制量:发送关节力矩 τ 或关节加速度指令至底层控制器;
  6. 循环更新:以 100--1000 Hz 频率重复上述过程。
6. 与 MPC 的关系
  • WBC 侧重实时性与模块化,适合高频(>200 Hz)底层控制;
  • MPC 侧重预测与全局优化,通常运行频率较低(10--100 Hz);
  • 实际系统常采用 MPC+WBC 分层架构
    • MPC 规划 CoM/ZMP/步态等高层轨迹;
    • WBC 跟踪这些轨迹并处理全身协调与约束。
7. 代表系统与开源框架
  • HyQ、TALOS、HRP-4、Atlas 等均采用 WBC 实现复杂行为;
  • 开源工具:
    • iDynTree + WBI-Toolbox(Istituto Italiano di Tecnologia);
    • ocs2(ETH Zurich,支持 WBC 与 MPC 融合);
    • Ginkgo (MIT)、LIPM-Walking(LAAS-CNRS)。
相关推荐
RPA机器人就用八爪鱼16 小时前
RPA赋能产品日报自动化:企业决策效率提升新引擎
机器人·rpa
RPA机器人就用八爪鱼17 小时前
RPA采集爬虫:数据采集自动化的高效解决方案
机器人·rpa
林伟_fpga17 小时前
室联人形机器人居家服务:提高安全性、任务场景降维、工作流程
人工智能·机器人
拿博客当笔记本18 小时前
[ROS2实战] 从零打造SLAM机器人(一):基于ESP32与Micro-ROS的底盘运动控制与里程计实现
机器人
科普瑞传感仪器19 小时前
航空航天领域青睐:复杂曲面机器人抛光为何必须采用六维力控?
运维·人工智能·机器人·自动化·无人机
zhangrelay21 小时前
Webots 2025a + ROS 2 Jazzy e-puck 机器人教程
笔记·学习·机器人
科普瑞传感仪器1 天前
告别“盲打磨”:六维力传感器如何通过选型实现真正的机器人恒力控制?
人工智能·科技·ai·机器人·无人机
TOYOAUTOMATON2 天前
自动化工业夹爪
大数据·人工智能·算法·目标检测·机器人
沫儿笙2 天前
安川弧焊机器人氩气智能节气装置
机器人