Hugging Face Transformers快速上手

Hugging Face Transformers快速入门指南

Hugging Face Transformers库提供了预训练模型和简单API,支持自然语言处理(NLP)任务的快速实现。以下是核心使用方法:

安装环境

bash 复制代码
pip install transformers
pip install torch  # 推荐安装PyTorch作为后端

加载预训练模型

python 复制代码
from transformers import AutoTokenizer, AutoModelForSequenceClassification

model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

文本预处理

python 复制代码
text = "Hugging Face makes NLP easy."
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)

模型推理

python 复制代码
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)

保存与加载模型

python 复制代码
model.save_pretrained("./saved_model")
tokenizer.save_pretrained("./saved_model")

# 加载时
model = AutoModelForSequenceClassification.from_pretrained("./saved_model")

常见任务示例

  • 文本分类:使用bert-base-uncased等模型
  • 问答系统:尝试distilbert-base-cased-distilled-squad
  • 文本生成:选择gpt2facebook/opt-350m

使用Pipeline快速推理

python 复制代码
from transformers import pipeline

classifier = pipeline("sentiment-analysis")
result = classifier("I love using Hugging Face!")

注意事项

  • 首次运行会自动下载模型至~/.cache/huggingface
  • 大模型需注意GPU显存限制
  • 可指定device_map="auto"自动分配计算设备

最新模型列表可查阅Hugging Face模型库,支持按任务类型筛选。

相关推荐
啊森要自信12 小时前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
要加油哦~12 小时前
AI | 实践教程 - ScreenCoder | 多agents前端代码生成
前端·javascript·人工智能
玄同76512 小时前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑12 小时前
用RedisVL构建长期记忆
人工智能
J_Xiong011712 小时前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper12 小时前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd12 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
CoderJia程序员甲13 小时前
GitHub 热榜项目 - 日榜(2026-02-06)
人工智能·ai·大模型·github·ai教程
wukangjupingbb13 小时前
AI多模态技术在创新药研发中的结合路径、机制及挑战
人工智能
CoderIsArt13 小时前
三大主流智能体框架解析
人工智能