day35文件的规范拆分和写法@浙大疏锦行

day35文件的规范拆分和写法@浙大疏锦行

文件目录

day35_文件的规范拆分和写法/
├── data/
│ └── raw/
│ └── heart.csv # 已替换为 heart.csv 数据集
├── models/ # 用于存放训练好的模型
├── notebook/
│ └── main.ipynb # 主程序 Notebook,演示了完整的调用流程
├── src/ # 源代码目录
│ ├── init.py
│ ├── data/
│ │ ├── init.py
│ │ └── preprocessing.py # 数据加载与预处理(针对 heart.csv 进行了适配)
│ ├── models/
│ │ ├── init.py
│ │ └── train.py # 模型训练、评估与保存逻辑
│ └── visualization/
│ ├── init.py
│ └── plots.py # 可视化绘图(SHAP图、混淆矩阵)
├── README.md # 项目说明文档
└── requirements.txt # 依赖库列表

项目运行

python 复制代码
import sys
import os

# 将项目根目录添加到系统路径
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "..")))

from src.data.preprocessing import load_data, encode_categorical_features, handle_missing_values
from src.models.train import train_model, evaluate_model, save_model
from src.visualization.plots import plot_feature_importance_shap, plot_confusion_matrix, set_plot_style
from sklearn.model_selection import train_test_split

1. 数据加载与预处理

python 复制代码
# 加载数据
data_path = "../data/raw/heart.csv"
data = load_data(data_path)
print("原始数据形状:", data.shape)
data.head()
python 复制代码
# 特征编码
data_encoded, _ = encode_categorical_features(data)
print("编码后数据形状:", data_encoded.shape)
data_encoded.head()

编码后数据形状: (303, 24)

age sex trestbps chol fbs thalach exang oldpeak ca target ... restecg_0 restecg_1 restecg_2 slope_0 slope_1 slope_2 thal_0 thal_1 thal_2 thal_3
0 63 1 145 233 1 150 0 2.3 0 1 ... 1 0 0 1 0 0 0 1 0 0
1 37 1 130 250 0 187 0 3.5 0 1 ... 0 1 0 1 0 0 0 0 1 0
2 41 0 130 204 0 172 0 1.4 0 1 ... 1 0 0 0 0 1 0 0 1 0
3 56 1 120 236 0 178 0 0.8 0 1 ... 0 1 0 0 0 1 0 0 1 0
4 57 0 120 354 0 163 1 0.6 0 1 ... 0 1 0 0 0 1 0 0 1 0

5 rows × 24 columns

python 复制代码
# 处理缺失值
data_clean = handle_missing_values(data_encoded)
print("处理缺失值后数据形状:", data_clean.shape)

处理缺失值后数据形状: (303, 24)

2. 模型训练

python 复制代码
# 准备训练数据
X = data_clean.drop(['target'], axis=1)
y = data_clean['target']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = train_model(X_train, y_train)
print("模型训练完成")

3. 模型评估

python 复制代码
evaluate_model(model, X_test, y_test)

4. 可视化

python 复制代码
import matplotlib.pyplot as plt

# 设置中文字体和样式(直接在 Notebook 中设置,避免样式名兼容问题)
plt.style.use('ggplot')
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS']
plt.rcParams['axes.unicode_minus'] = False

# 绘制混淆矩阵
plot_confusion_matrix(y_test, model.predict(X_test))
python 复制代码
import matplotlib.pyplot as plt

# 再次设置中文字体,确保 SHAP 图中文字正常显示
plt.style.use('ggplot')
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS']
plt.rcParams['axes.unicode_minus'] = False

# 绘制SHAP特征重要性
plot_feature_importance_shap(model, X_test)

5. 保存模型

python 复制代码
save_model(model, "../models/heart_disease_rf_model.joblib")

@浙大疏锦行

相关推荐
sxy_97611 分钟前
AX86u官方固件温度监控(CPU,WIFI芯片)
python·docker·curl·nc·nas·温度·ax86u
诗词在线1 分钟前
适合赞美风景的诗词名句汇总
python·风景
2401_841495647 分钟前
【LeetCode刷题】删除链表的倒数第N个结点
数据结构·python·算法·leetcode·链表·遍历·双指针
Non-existent98717 分钟前
地理空间数据处理指南 | 实战案例+代码TableGIS
人工智能·python·数据挖掘
xj75730653334 分钟前
python中的序列化
服务器·数据库·python
郝学胜-神的一滴37 分钟前
机器学习特征选择:深入理解移除低方差特征与sklearn的VarianceThreshold
开发语言·人工智能·python·机器学习·概率论·sklearn
却道天凉_好个秋41 分钟前
Tensorflow数据增强(一):图片的导入与显示
人工智能·python·tensorflow
ONExiaobaijs1 小时前
Java jdk运行库合集
java·开发语言·python
Pyeako1 小时前
深度学习--PyTorch框架&优化器&激活函数
人工智能·pytorch·python·深度学习·优化器·激活函数·梯度爆炸与消失
Knight_AL1 小时前
一文讲透 Java 中transient的用处(结合 Flink 理解)
java·python·flink