通识性AI知识点:Token和Context

简单理解:如果把AI大模型想象成一个正在阅读的人,那么 Token(令牌)是它读到的"每一个字词",而Context(上下文/上下文长度)是它"一次性能记住和参考的前面内容的范围"

为了帮你更清晰地理解,我将它们的核心区别和联系总结如下:

特性维度 Token Context
本质 基本处理单位。文本被拆分后的小块。 工作记忆范围。模型单次处理时能"看到"的所有Token的集合。
角色 模型的"输入数据"和"输出材料",像建造用的砖块。 模型的"短期记忆"或"视野范围",像工人手边可用的图纸和参考。
衡量单位 "个" 长度 ,通常用 Token数量 来表示(例如 8K、128K)。
关键限制 影响计费、生成速度。输入输出都按Token数计价。 决定模型单次能处理的信息量。超出范围的Token会被"遗忘"。
常见类比 文章中的字、词、标点 阅读时能记住并参考的前文长度

🔗 它们如何紧密协作

理解了区别后,更要看它们如何共同工作:

  1. Context 是"容器",Token 是"内容" :一个 8K Context 的模型,意味着它能一次性处理最多 8000个 Token。这8000个Token可以全部是用户的提问,也可以是"提问+模型自己刚才生成的回答"。

  2. Context 限制直接影响能力:如果一份文档有1万个Token,但模型的Context只有8K,那么模型无法一次性理解全文。必须将文档拆分,或者采用"滑动窗口"等技巧,这过程中可能会丢失一些信息。

  3. Token是成本与性能的标尺:我们常说的"输入/输出Tokens",就是消耗算力的直接体现。Context的大小则决定了模型单次处理的复杂度上限。

💎 总结与实例

你可以这样记住:

  • Token的维度,回答"有多少信息"。

  • Context的维度,回答"能处理多复杂的信息"。

举个例子:你让AI总结一篇长文章。

  • 首先,文章会被切分成成千上万个 Token 输入给模型。

  • 模型的 Context 长度 决定了它能一次性"吃下"多少内容来总结。如果文章太长,你可能需要分章节提交。

相关推荐
陈橘又青4 小时前
vLLM-Ascend推理部署与性能调优深度实战指南:架构解析、环境搭建与核心配置
人工智能·后端·ai·架构·restful·数据·vllm
小北方城市网4 小时前
第7课:Vue 3应用性能优化与进阶实战——让你的应用更快、更流畅
前端·javascript·vue.js·ai·性能优化·正则表达式·json
慢慢慢时光5 小时前
claude code使用
ai
DO_Community6 小时前
从零开始,用 n8n 设计可扩展的自动化工作流
运维·ai·自动化·devops
程序员鱼皮6 小时前
女友怒骂国内不能用Claude Code,于是我给她做了一个
计算机·ai·程序员·大模型·互联网·编程
小真zzz6 小时前
当前集成Nano Banana Pro模型的AI PPT工具排名与分析
开发语言·人工智能·ai·powerpoint·ppt
De-Alf6 小时前
Megatron-LM学习笔记(5)Model Linear线性层
笔记·学习·ai
信仰JR6 小时前
Linux系统使用Docker安装Ollama
运维·docker·ai
带刺的坐椅8 小时前
超越 SpringBoot 4.0了吗?OpenSolon v3.8, v3.7.4, v3.6.7 发布
java·ai·springboot·web·solon·flow·mcp