AI应用(3)-基础概念的理解

前面两篇说了几个规则概念,下面对上面几个概念做一个总结吧

prompt

这个概念以前我也不懂,最近查了一些资料总结了一下,他其实是一个集合,相当于你发给模型的文本内容,其中包括了system(由程序控制,每次发给大模型的),然后就是user(用户问题),然后就是assistant(由程序控制,每次发给大模型的)。temperature/top_p/max_tokens更准确来说,应该叫生成参数。 (这是说,这些参数也会在每次请求都发给大模型,由程序控制,每次发给大模型的),如果你开发的是一个智能体,那这个事情就是智能体去做的,所有LLM总体要做的其实是接收信息,然后返回信息而已。

上下文管理

之前一篇说过上下文窗口,那个是非常浅显的理解,如果真的要做AI应用,还需要设计到上下文的管理,因为每次调用模型的时候,都要把历史记录发送给大模型去看,模型本身是不会有记忆的,上下文窗口又有限,除非你有很高的算力,不然你全部一股脑的全部发过去,花费的token高,模型理解回答也慢,信息多了,模型回答的也不准,一般情况下,都是需要对上下文进行裁剪,然后发送给大模型去回答。

针对不同场景,可能需要提取的关键信息不同,比如针对智能客服类,你需要提取的就是用户的身份信息,关键订单信息、用户已经给过的固定规则、以及本次对话的目的。

一般情况下,上下文的裁剪,第一个原则是保留最近N轮对话数据+关键字段卡片,也可只保留最近N轮对话,这个根据具体情况而定

如果需要长期记忆的话,就需要走RAG查询,这个后面会介绍到。

其他需要注意的点

  • 输出控制和可用性:这个主要是模型返回数据结构化输出,方便前端渲染,后端处理
  • 引用/证据:要求模型回答的时候,都有据可依,降低胡编乱造
  • 拒答/提示信息:要求模型要学会拒绝,不知道的问题要回答不知道,然后提示用户下一步应该去怎么做,去自己查还是说去联系人工客服之类的提示建议。

企业里面一般怎么分工

到这里,可能还是有点模糊,我是搞后端的,我主要负责干嘛?其实把大模型抛开,企业里面一般分为这些角色,大概的吧,不一定准:

  • 后端/平台开发:实现对话管理(存储、裁剪、摘要、token控制、限流、日志)
  • 算法/AI应用工程师:设计prompt、策略、评估集,调参,设计 RAG/Agent 流程
  • 产品/业务:定义"哪些信息是关键""哪些规则必须遵守""输出格式长什么样"

如果是小团队,可能就是一个人做

相关推荐
梁辰兴11 小时前
百亿美元赌注变数,AI军备竞赛迎来转折点?
人工智能·ai·大模型·openai·英伟达·梁辰兴·ai军备竞赛
Anarkh_Lee12 小时前
【小白也能实现智能问数智能体】使用开源的universal-db-mcp在coze中实现问数 AskDB智能体
数据库·人工智能·ai·开源·ai编程
ahxdyz15 小时前
.NET平台MCP
ai·.net·mcp
阿杰学AI17 小时前
AI核心知识75——大语言模型之MAS (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agent·多智能体协作·mas
孪生质数-18 小时前
Windows安装OpenClaw(Clawdbot)教程
ai·npm·skill·minimax·clawdbot·openclaw
RANCE_atttackkk18 小时前
Springboot+langchain4j的RAG检索增强生成
java·开发语言·spring boot·后端·spring·ai·ai编程
CoderJia程序员甲19 小时前
GitHub 热榜项目 - 日榜(2026-01-31)
ai·开源·大模型·github·ai教程
孟秋与你19 小时前
【openclaw】centos9安装oepnclaw教程 解决安装期间的报错
ai
m0_6038887120 小时前
FineInstructions Scaling Synthetic Instructions to Pre-Training Scale
人工智能·深度学习·机器学习·ai·论文速览
爬台阶的蚂蚁21 小时前
RAG概念和使用
ai·rag