上一篇已经给出了选举leader执行任务的案例,接下来将领导者选举 例子改成分布式锁(Distributed Lock) 的实现方式。 模拟一个高并发扣减库存 的场景:多个节点同时抢购同一商品(库存=100),使用 ZooKeeper 分布式锁确保同一时刻只有一个节点能扣库存,避免超卖。
核心区别回顾:
- 领导者选举 :全局只有一个 Leader 长期持有,一直执行任务。
- 分布式锁 :谁需要操作资源就去抢锁 ,用完立即释放,其他节点可以继续抢。
distributed-lock-service/
├── pom.xml
├── src/
│ └── main/
│ ├── java/
│ │ └── com/example/
│ │ ├── DistributedLock.java // 分布式锁核心
│ │ ├── InventoryService.java // 库存扣减服务
│ │ └── App.java // 主入口
│ └── resources/
│ └── application.properties
pom.xml(依赖同前,添加 Curator 简化实现,生产中推荐 Curator 而非原生 ZooKeeper API)
1 <dependencies>
2 <!-- ZooKeeper 原生客户端 -->
3 <dependency>
4 <groupId>org.apache.zookeeper</groupId>
5 <artifactId>zookeeper</artifactId>
6 <version>3.8.0</version>
7 </dependency>
8 <!-- Curator 框架(推荐!简化分布式锁、选举等) -->
9 <dependency>
10 <groupId>org.apache.curator</groupId>
11 <artifactId>curator-recipes</artifactId>
12 <version>5.7.0</version>
13 </dependency>
14 <dependency>
15 <groupId>org.apache.curator</groupId>
16 <artifactId>curator-framework</artifactId>
17 <version>5.7.0</version>
18 </dependency>
19 <!-- SLF4J -->
20 <dependency>
21 <groupId>org.slf4j</groupId>
22 <artifactId>slf4j-simple</artifactId>
23 <version>1.7.36</version>
24 </dependency>
25 </dependencies>
- 配置(application.properties)
1 zk.connectString=192.168.1.101:2181,192.168.1.102:2181,192.168.1.103:2181
2 zk.sessionTimeout=5000
3 zk.connectionTimeout=3000
4
5 # 分布式锁根路径
6 lock.rootPath=/locks
7 # 具体锁路径(这里模拟商品库存锁)
8 lock.path=/locks/inventory/product-12345
- 核心代码
DistributedLock.java(基于 Curator 的可重入公平分布式锁)
1 package com.example;
2
3 import org.apache.curator.framework.CuratorFramework;
4 import org.apache.curator.framework.CuratorFrameworkFactory;
5 import org.apache.curator.framework.recipes.locks.InterProcessMutex;
6 import org.apache.curator.retry.ExponentialBackoffRetry;
7 import org.slf4j.Logger;
8 import org.slf4j.LoggerFactory;
9
10 import java.util.concurrent.TimeUnit;
11
12 public class DistributedLock {
13 private static final Logger logger = LoggerFactory.getLogger(DistributedLock.class);
14
15 private final CuratorFramework client;
16 private final InterProcessMutex lock;
17 private final String lockPath;
18
19 public DistributedLock(String zkConnectString, int sessionTimeout, String lockPath) {
20 this.lockPath = lockPath;
21
22 // Curator 客户端(带重试机制)
23 ExponentialBackoffRetry retryPolicy = new ExponentialBackoffRetry(1000, 3);
24 this.client = CuratorFrameworkFactory.newClient(zkConnectString, sessionTimeout, 3000, retryPolicy);
25 client.start();
26
27 // 可重入公平分布式锁
28 this.lock = new InterProcessMutex(client, lockPath);
29 }
30
31 /**
32 * 尝试获取锁,超时则返回 false
33 */
34 public boolean acquire(long timeout, TimeUnit unit) {
35 try {
36 boolean acquired = lock.acquire(timeout, unit);
37 if (acquired) {
38 logger.info("Lock acquired: {}", lockPath);
39 } else {
40 logger.warn("Failed to acquire lock within timeout: {}", lockPath);
41 }
42 return acquired;
43 } catch (Exception e) {
44 logger.error("Error acquiring lock", e);
45 return false;
46 }
47 }
48
49 /**
50 * 释放锁
51 */
52 public void release() {
53 try {
54 if (lock.isAcquiredInThisProcess()) {
55 lock.release();
56 logger.info("Lock released: {}", lockPath);
57 }
58 } catch (Exception e) {
59 logger.error("Error releasing lock", e);
60 }
61 }
62
63 public void close() {
64 client.close();
65 }
66 }
InventoryService.java(模拟库存扣减)
1 package com.example;
2
3 import org.slf4j.Logger;
4 import org.slf4j.LoggerFactory;
5
6 import java.util.concurrent.atomic.AtomicInteger;
7
8 public class InventoryService {
9 private static final Logger logger = LoggerFactory.getLogger(InventoryService.class);
10
11 // 模拟库存(实际应从数据库读取)
12 private final AtomicInteger stock = new AtomicInteger(100);
13
14 /**
15 * 扣减库存(模拟业务逻辑)
16 */
17 public void deductStock(int quantity) {
18 if (stock.get() < quantity) {
19 logger.warn("库存不足!当前库存: {}", stock.get());
20 return;
21 }
22
23 // 模拟数据库操作耗时
24 try {
25 Thread.sleep(50); // 模拟网络延迟
26 } catch (InterruptedException e) {
27 Thread.currentThread().interrupt();
28 }
29
30 int newStock = stock.addAndGet(-quantity);
31 logger.info("扣减成功!扣减数量: {},剩余库存: {}", quantity, newStock);
32 }
33
34 public int getStock() {
35 return stock.get();
36 }
37 }
App.java(主入口:模拟 10 个并发请求抢锁)
1 package com.example;
2
3 import java.io.IOException;
4 import java.util.Properties;
5 import java.util.concurrent.ExecutorService;
6 import java.util.concurrent.Executors;
7 import java.util.concurrent.TimeUnit;
8
9 public class App {
10 public static void main(String[] args) throws IOException, InterruptedException {
11 Properties props = new Properties();
12 props.load(App.class.getClassLoader().getResourceAsStream("application.properties"));
13
14 String zkConnect = props.getProperty("zk.connectString");
15 int sessionTimeout = Integer.parseInt(props.getProperty("zk.sessionTimeout"));
16 String lockPath = props.getProperty("lock.path");
17
18 InventoryService inventory = new InventoryService();
19 DistributedLock lock = new DistributedLock(zkConnect, sessionTimeout, lockPath);
20
21 // 模拟 10 个并发请求(实际生产中来自不同服务实例或线程)
22 ExecutorService executor = Executors.newFixedThreadPool(10);
23 for (int i = 0; i < 10; i++) {
24 final int orderId = i + 1;
25 executor.submit(() -> {
26 System.out.println("订单 " + orderId + " 开始尝试扣库存...");
27
28 // 尝试获取锁(超时 3 秒)
29 if (lock.acquire(3, TimeUnit.SECONDS)) {
30 try {
31 // 临界区:扣库存
32 inventory.deductStock(1);
33 } finally {
34 // 必须释放锁!
35 lock.release();
36 }
37 } else {
38 System.out.println("订单 " + orderId + " 获取锁超时,放弃本次扣减");
39 }
40 });
41 }
42
43 executor.shutdown();
44 executor.awaitTermination(30, TimeUnit.SECONDS);
45
46 System.out.println("最终剩余库存: " + inventory.getStock());
47 lock.close();
48 }
49 }
部署方式(与领导者选举完全相同)
-
3 台服务器(node1、node2、node3)
-
安装 ZooKeeper 集群(同前)
-
打包 JAR:mvn clean package
-
每台服务器上传 JAR + application.properties
-
启动脚本(start.sh)同前,但 node.id 不需要了(分布式锁不需要唯一 ID)
nohup java -jar distributed-lock-service-1.0-SNAPSHOT.jar > service.log 2>&1 &- 运行方式 :在任意一台或多台服务器上启动多个实例(或在同一台机器启动多个进程),模拟并发。
- 验证 :启动后观察日志,只有一个线程/进程能成功扣库存,其他线程要么等待要么超时。
日志示例(运行后可能的输出)
订单 1 开始尝试扣库存...
订单 2 开始尝试扣库存...
订单 3 开始尝试扣库存...
...
[INFO] Lock acquired: /locks/inventory/product-12345 // 订单1 抢到锁
[INFO] 扣减成功!扣减数量: 1,剩余库存: 99
[INFO] Lock released: /locks/inventory/product-12345
订单 4 开始尝试扣库存...
[INFO] Lock acquired: /locks/inventory/product-12345 // 订单4 抢到锁
[INFO] 扣减成功!扣减数量: 1,剩余库存: 98
[INFO] Lock released: /locks/inventory/product-12345
...
最终剩余库存: 90 // 扣了 10 次,库存从 100 -> 90,无超卖
与领导者选举的对比总结
| 方面 | 领导者选举(前例) | 分布式锁(本例) |
|---|---|---|
| 日志出现频率 | 选举只在启动或 Leader 宕机时触发一次 | 每次业务请求都可能触发抢锁/释放日志(高频) |
| 持有锁时间 | 长期(直到宕机) | 极短(扣库存 50ms + 网络延迟) |
| 日志关键词 | "I am the Leader"、"I am Follower, watching" | "Lock acquired"、"Lock released"、"Failed to acquire" |
| 并发场景 | 所有节点只选一个干活 | 多个节点/线程并发抢同一把锁 |
| 释放时机 | 通常不释放(宕机自动释放) | 必须在 finally 中释放,否则死锁 |
| 典型日志量 | 少(启动 + 宕机时) | 多(每个订单都有一条 acquire + release) |
生产环境建议
- 用 Curator:原生 ZooKeeper 实现分布式锁容易出错(比如忘记释放、顺序节点管理复杂),Curator 的 InterProcessMutex 可解决。
- 可重入性:Curator 锁默认支持可重入(同一线程可多次 acquire)。
- 公平锁:默认公平(FIFO),避免饥饿。
- 锁超时:业务设置合理超时,避免长时间阻塞。
- 监控:监控 ZooKeeper 节点数、Watch 数量、锁竞争频率。