本文基于CANN开源社区的metadef和ops-nn仓库进行技术解读
CANN组织地址:https://atomgit.com/cann
metadef仓库地址:https://atomgit.com/cann/metadef
ops-nn仓库地址:https://atomgit.com/cann/ops-nn
前言
元数据定义和神经网络算子是模型表示和执行的基础。MetaDef(元数据定义)与Ops-NN(神经网络算子库)如何协同工作?如何实现高效的元数据定义和神经网络算子集成?
本文探讨MetaDef与Ops-NN的协同机制,以及如何通过两者的配合实现高效的模型表示和执行。
什么是组合元数据定义算子集成
MetaDef与Ops-NN的组合:
没有协同:
元数据定义和算子库各自独立 → 模型表示不一致 → 执行效率低
有协同:
元数据定义和算子库协同 → 模型表示一致 → 执行效率高
架构:
模型定义
↓
MetaDef(元数据定义)
↓
Ops-NN(神经网络算子)
↓
NPU硬件
核心概念
1. 元数据定义
元数据定义:
c
#include "metadef/metadef.h"
// 元数据配置
typedef struct {
metadata_type_t type; // 元数据类型
metadata_format_t format; // 元数据格式
metadata_version_t version; // 元数据版本
validation_policy_t policy; // 验证策略
} metadata_config_t;
// 创建元数据配置
metadata_config_t *create_metadata_config(metadata_type_t type);
// 元数据类型
typedef enum {
METADATA_TYPE_OPERATOR, // 算子元数据
METADATA_TYPE_TENSOR, // 张量元数据
METADATA_TYPE_GRAPH, // 图元数据
METADATA_TYPE_ATTRIBUTE // 属性元数据
} metadata_type_t;
2. 神经网络算子
神经网络算子:
c
// 算子元数据
typedef struct {
char *name; // 算子名称
operator_type_t type; // 算子类型
input_metadata_t *inputs; // 输入元数据
output_metadata_t *outputs; // 输出元数据
attribute_metadata_t *attributes; // 属性元数据
} operator_metadata_t;
// 创建算子元数据
operator_metadata_t *create_operator_metadata(char *name, operator_type_t type);
3. 元数据验证
元数据验证:
c
// 验证配置
typedef struct {
bool enable_type_checking; // 启用类型检查
bool enable_shape_checking; // 启用形状检查
bool enable_value_checking; // 启用值检查
bool enable_consistency_checking; // 启用一致性检查
} validation_config_t;
// 创建验证配置
validation_config_t *create_validation_config();
协同优化
1. 算子元数据定义
c
// 算子元数据定义
void define_operator_metadata() {
// 阶段1:创建元数据配置
printf("Phase 1: Create Metadata Configuration\n");
metadata_config_t *meta_config = create_metadata_config(METADATA_TYPE_OPERATOR);
meta_config->format = METADATA_FORMAT_JSON;
meta_config->version = METADATA_VERSION_2_0;
printf(" Metadata configuration created\n");
// 阶段2:定义卷积算子元数据
printf("\nPhase 2: Define Convolution Operator Metadata\n");
operator_metadata_t *conv_metadata = create_operator_metadata("Conv2D", OPERATOR_TYPE_CONV2D);
// 定义输入元数据
input_metadata_t *inputs = malloc(1 * sizeof(input_metadata_t));
inputs[0].name = "input";
inputs[0].dtype = DATA_TYPE_FLOAT32;
inputs[0].shape[0] = -1; // batch size
inputs[0].shape[1] = 3; // channels
inputs[0].shape[2] = 224; // height
inputs[0].shape[3] = 224; // width
inputs[0].ndim = 4;
conv_metadata->inputs = inputs;
conv_metadata->num_inputs = 1;
// 定义输出元数据
output_metadata_t *outputs = malloc(1 * sizeof(output_metadata_t));
outputs[0].name = "output";
outputs[0].dtype = DATA_TYPE_FLOAT32;
outputs[0].shape[0] = -1; // batch size
outputs[0].shape[1] = 64; // channels
outputs[0].shape[2] = 224; // height
outputs[0].shape[3] = 224; // width
outputs[0].ndim = 4;
conv_metadata->outputs = outputs;
conv_metadata->num_outputs = 1;
// 定义属性元数据
attribute_metadata_t *attributes = malloc(4 * sizeof(attribute_metadata_t));
attributes[0].name = "kernel_size";
attributes[0].type = ATTRIBUTE_TYPE_INT;
attributes[0].value.int_value = 3;
attributes[1].name = "stride";
attributes[1].type = ATTRIBUTE_TYPE_INT;
attributes[1].value.int_value = 1;
attributes[2].name = "padding";
attributes[2].type = ATTRIBUTE_TYPE_STRING;
attributes[2].value.string_value = "SAME";
attributes[3].name = "activation";
attributes[3].type = ATTRIBUTE_TYPE_STRING;
attributes[3].value.string_value = "ReLU";
conv_metadata->attributes = attributes;
conv_metadata->num_attributes = 4;
printf(" Convolution operator metadata defined\n");
// 阶段3:验证元数据
printf("\nPhase 3: Validate Metadata\n");
validation_config_t *val_config = create_validation_config();
val_config->enable_type_checking = true;
val_config->enable_shape_checking = true;
val_config->enable_value_checking = true;
val_config->enable_consistency_checking = true;
validation_result_t *result = validate_operator_metadata(conv_metadata, val_config);
if (result->is_valid) {
printf(" Validation: PASSED\n");
} else {
printf(" Validation: FAILED\n");
printf(" Errors:\n");
for (int i = 0; i < result->num_errors; i++) {
printf(" %d. %s\n", i + 1, result->errors[i]);
}
}
// 阶段4:序列化元数据
printf("\nPhase 4: Serialize Metadata\n");
char *serialized = serialize_operator_metadata(conv_metadata, meta_config);
printf(" Metadata serialized\n");
printf(" Serialized metadata:\n%s\n", serialized);
}
2. 元数据与算子集成
c
// 元数据与算子集成
void integrate_metadata_with_operator() {
// 阶段1:加载元数据
printf("Phase 1: Load Metadata\n");
metadata_config_t *meta_config = create_metadata_config(METADATA_TYPE_OPERATOR);
meta_config->format = METADATA_FORMAT_JSON;
operator_metadata_t *metadata = load_operator_metadata("conv2d_metadata.json", meta_config);
printf(" Metadata loaded\n");
printf(" Operator name: %s\n", metadata->name);
printf(" Operator type: %d\n", metadata->type);
// 阶段2:创建算子
printf("\nPhase 2: Create Operator\n");
operator_t *op = create_operator_from_metadata(metadata);
printf(" Operator created\n");
// 阶段3:验证算子
printf("\nPhase 3: Validate Operator\n");
validation_config_t *val_config = create_validation_config();
val_config->enable_type_checking = true;
val_config->enable_shape_checking = true;
validation_result_t *result = validate_operator(op, val_config);
if (result->is_valid) {
printf(" Validation: PASSED\n");
} else {
printf(" Validation: FAILED\n");
}
// 阶段4:执行算子
printf("\nPhase 4: Execute Operator\n");
// 准备输入数据
int batch_size = 1;
int height = 224;
int width = 224;
float *input = malloc(batch_size * 3 * height * width * sizeof(float));
float *output = malloc(batch_size * 64 * height * width * sizeof(float));
initialize_random(input, batch_size * 3 * height * width);
// 执行算子
execute_operator(op, input, output);
printf(" Operator executed\n");
// 阶段5:验证输出
printf("\nPhase 5: Validate Output\n");
bool is_valid = validate_output(output, metadata->outputs);
if (is_valid) {
printf(" Output validation: PASSED\n");
} else {
printf(" Output validation: FAILED\n");
}
// 清理资源
free(input);
free(output);
destroy_operator(op);
destroy_operator_metadata(metadata);
}
3. 自动元数据生成
c
// 自动元数据生成
void auto_generate_metadata(operator_t *op) {
// 阶段1:分析算子
printf("Phase 1: Analyze Operator\n");
operator_analysis_t *analysis = analyze_operator(op);
printf(" Operator name: %s\n", analysis->name);
printf(" Operator type: %d\n", analysis->type);
printf(" Num inputs: %d\n", analysis->num_inputs);
printf(" Num outputs: %d\n", analysis->num_outputs);
printf(" Num attributes: %d\n", analysis->num_attributes);
// 阶段2:生成元数据
printf("\nPhase 2: Generate Metadata\n");
operator_metadata_t *metadata = generate_operator_metadata(analysis);
printf(" Metadata generated\n");
// 阶段3:验证元数据
printf("\nPhase 3: Validate Metadata\n");
validation_config_t *val_config = create_validation_config();
val_config->enable_type_checking = true;
val_config->enable_shape_checking = true;
val_config->enable_consistency_checking = true;
validation_result_t *result = validate_operator_metadata(metadata, val_config);
if (result->is_valid) {
printf(" Validation: PASSED\n");
} else {
printf(" Validation: FAILED\n");
printf(" Errors:\n");
for (int i = 0; i < result->num_errors; i++) {
printf(" %d. %s\n", i + 1, result->errors[i]);
}
}
// 阶段4:保存元数据
printf("\nPhase 4: Save Metadata\n");
metadata_config_t *meta_config = create_metadata_config(METADATA_TYPE_OPERATOR);
meta_config->format = METADATA_FORMAT_JSON;
save_operator_metadata(metadata, "auto_generated_metadata.json", meta_config);
printf(" Metadata saved\n");
}
使用场景
场景一:模型元数据定义
c
// 模型元数据定义
void define_model_metadata() {
// 阶段1:创建模型元数据
printf("Phase 1: Create Model Metadata\n");
graph_metadata_t *model_metadata = create_graph_metadata("ResNet50");
// 阶段2:定义输入元数据
printf("\nPhase 2: Define Input Metadata\n");
input_metadata_t *input = malloc(1 * sizeof(input_metadata_t));
input[0].name = "input";
input[0].dtype = DATA_TYPE_FLOAT32;
input[0].shape[0] = -1; // batch size
input[0].shape[1] = 3; // channels
input[0].shape[2] = 224; // height
input[0].shape[3] = 224; // width
input[0].ndim = 4;
model_metadata->inputs = input;
model_metadata->num_inputs = 1;
printf(" Input metadata defined\n");
// 阶段3:定义输出元数据
printf("\nPhase 3: Define Output Metadata\n");
output_metadata_t *output = malloc(1 * sizeof(output_metadata_t));
output[0].name = "output";
output[0].dtype = DATA_TYPE_FLOAT32;
output[0].shape[0] = -1; // batch size
output[0].shape[1] = 1000; // classes
output[0].ndim = 2;
model_metadata->outputs = output;
model_metadata->num_outputs = 1;
printf(" Output metadata defined\n");
// 阶段4:添加算子元数据
printf("\nPhase 4: Add Operator Metadata\n");
// 添加卷积层
operator_metadata_t *conv1 = create_operator_metadata("conv1", OPERATOR_TYPE_CONV2D);
add_operator_metadata(model_metadata, conv1);
// 添加池化层
operator_metadata_t *pool1 = create_operator_metadata("pool1", OPERATOR_TYPE_MAX_POOL);
add_operator_metadata(model_metadata, pool1);
// 添加全连接层
operator_metadata_t *fc = create_operator_metadata("fc", OPERATOR_TYPE_DENSE);
add_operator_metadata(model_metadata, fc);
printf(" Operator metadata added\n");
printf(" Total operators: %d\n", model_metadata->num_operators);
// 阶段5:验证模型元数据
printf("\nPhase 5: Validate Model Metadata\n");
validation_config_t *val_config = create_validation_config();
val_config->enable_type_checking = true;
val_config->enable_shape_checking = true;
val_config->enable_consistency_checking = true;
validation_result_t *result = validate_graph_metadata(model_metadata, val_config);
if (result->is_valid) {
printf(" Validation: PASSED\n");
} else {
printf(" Validation: FAILED\n");
}
// 阶段6:保存模型元数据
printf("\nPhase 6: Save Model Metadata\n");
metadata_config_t *meta_config = create_metadata_config(METADATA_TYPE_GRAPH);
meta_config->format = METADATA_FORMAT_JSON;
save_graph_metadata(model_metadata, "resnet50_metadata.json", meta_config);
printf(" Model metadata saved\n");
}
场景二:元数据驱动的算子执行
c
// 元数据驱动的算子执行
void metadata_driven_execution() {
// 阶段1:加载模型元数据
printf("Phase 1: Load Model Metadata\n");
metadata_config_t *meta_config = create_metadata_config(METADATA_TYPE_GRAPH);
meta_config->format = METADATA_FORMAT_JSON;
graph_metadata_t *model_metadata = load_graph_metadata("resnet50_metadata.json", meta_config);
printf(" Model metadata loaded\n");
printf(" Model name: %s\n", model_metadata->name);
printf(" Num operators: %d\n", model_metadata->num_operators);
// 阶段2:创建算子实例
printf("\nPhase 2: Create Operator Instances\n");
operator_t **operators = malloc(model_metadata->num_operators * sizeof(operator_t *));
for (int i = 0; i < model_metadata->num_operators; i++) {
operators[i] = create_operator_from_metadata(&model_metadata->operators[i]);
printf(" Created operator: %s\n", model_metadata->operators[i].name);
}
// 阶段3:创建执行图
printf("\nPhase 3: Create Execution Graph\n");
execution_graph_t *graph = create_execution_graph();
for (int i = 0; i < model_metadata->num_operators; i++) {
add_operator_to_graph(graph, operators[i]);
}
printf(" Execution graph created\n");
// 阶段4:执行图
printf("\nPhase 4: Execute Graph\n");
// 准备输入数据
int batch_size = 1;
int height = 224;
int width = 224;
float *input = malloc(batch_size * 3 * height * width * sizeof(float));
float *output = malloc(batch_size * 1000 * sizeof(float));
initialize_random(input, batch_size * 3 * height * width);
// 执行图
execute_graph(graph, input, output);
printf(" Graph executed\n");
// 阶段5:验证输出
printf("\nPhase 5: Validate Output\n");
bool is_valid = validate_output(output, model_metadata->outputs);
if (is_valid) {
printf(" Output validation: PASSED\n");
} else {
printf(" Output validation: FAILED\n");
}
// 清理资源
free(input);
free(output);
for (int i = 0; i < model_metadata->num_operators; i++) {
destroy_operator(operators[i]);
}
free(operators);
destroy_execution_graph(graph);
destroy_graph_metadata(model_metadata);
}
场景三:元数据版本管理
c
// 元数据版本管理
void metadata_version_management() {
// 阶段1:创建不同版本的元数据
printf("Phase 1: Create Different Metadata Versions\n");
// 创建版本1.0
metadata_config_t *config_v1 = create_metadata_config(METADATA_TYPE_OPERATOR);
config_v1->version = METADATA_VERSION_1_0;
config_v1->format = METADATA_FORMAT_JSON;
operator_metadata_t *metadata_v1 = create_operator_metadata("Conv2D_v1", OPERATOR_TYPE_CONV2D);
save_operator_metadata(metadata_v1, "conv2d_v1.0.json", config_v1);
printf(" Metadata version 1.0 created\n");
// 创建版本2.0
metadata_config_t *config_v2 = create_metadata_config(METADATA_TYPE_OPERATOR);
config_v2->version = METADATA_VERSION_2_0;
config_v2->format = METADATA_FORMAT_JSON;
operator_metadata_t *metadata_v2 = create_operator_metadata("Conv2D_v2", OPERATOR_TYPE_CONV2D);
save_operator_metadata(metadata_v2, "conv2d_v2.0.json", config_v2);
printf(" Metadata version 2.0 created\n");
// 阶段2:比较版本
printf("\nPhase 2: Compare Versions\n");
version_diff_t *diff = compare_metadata_versions(metadata_v1, metadata_v2);
printf(" Version differences:\n");
printf(" Added attributes: %d\n", diff->num_added);
printf(" Removed attributes: %d\n", diff->num_removed);
printf(" Modified attributes: %d\n", diff->num_modified);
// 阶段3:升级元数据
printf("\nPhase 3: Upgrade Metadata\n");
operator_metadata_t *upgraded = upgrade_metadata(metadata_v1, METADATA_VERSION_2_0);
printf(" Metadata upgraded\n");
// 阶段4:验证升级后的元数据
printf("\nPhase 4: Validate Upgraded Metadata\n");
validation_config_t *val_config = create_validation_config();
val_config->enable_type_checking = true;
val_config->enable_consistency_checking = true;
validation_result_t *result = validate_operator_metadata(upgraded, val_config);
if (result->is_valid) {
printf(" Validation: PASSED\n");
} else {
printf(" Validation: FAILED\n");
}
// 清理资源
destroy_operator_metadata(metadata_v1);
destroy_operator_metadata(metadata_v2);
destroy_operator_metadata(upgraded);
destroy_version_diff(diff);
}
性能优化
1. 元数据缓存
c
// 元数据缓存
void metadata_cache_optimization() {
// 创建元数据缓存
metadata_cache_t *cache = create_metadata_cache();
// 设置缓存策略
cache->policy = CACHE_POLICY_LRU;
cache->max_size = 1000;
// 使用缓存
operator_metadata_t *metadata = get_metadata_from_cache(cache, "Conv2D");
if (metadata == NULL) {
// 从文件加载
metadata = load_operator_metadata("conv2d_metadata.json", config);
// 添加到缓存
add_metadata_to_cache(cache, "Conv2D", metadata);
}
}
2. 元数据压缩
c
// 元数据压缩
void metadata_compression_optimization() {
// 加载元数据
operator_metadata_t *metadata = load_operator_metadata("conv2d_metadata.json", config);
// 序列化元数据
char *serialized = serialize_operator_metadata(metadata, config);
// 压缩元数据
size_t original_size = strlen(serialized);
char *compressed = compress_metadata(serialized, original_size);
size_t compressed_size = strlen(compressed);
printf("Original size: %d bytes\n", original_size);
printf("Compressed size: %d bytes\n", compressed_size);
printf("Compression ratio: %.2f%%\n", (1.0 - (float)compressed_size / original_size) * 100);
}
3. 元数据预加载
c
// 元数据预加载
void metadata_preload_optimization() {
// 创建元数据预加载器
metadata_preloader_t *preloader = create_metadata_preloader();
// 添加预加载任务
add_preload_task(preloader, "conv2d_metadata.json");
add_preload_task(preloader, "pool2d_metadata.json");
add_preload_task(preloader, "dense_metadata.json");
// 执行预加载
execute_preload(preloader);
// 使用预加载的元数据
operator_metadata_t *metadata = get_preloaded_metadata(preloader, "conv2d_metadata.json");
}
与其他组件的关系
| 组件 | 关系 |
|---|---|
| metadef | 元数据定义 |
| ops-nn | 神经网络算子 |
| ge | 图引擎 |
| runtime | 运行时支持 |
关系:
模型定义
↓
MetaDef(元数据定义)
↓
Ops-NN(神经网络算子)
↓
Runtime(运行时)
↓
NPU硬件
调试技巧
1. 元数据验证
c
// 元数据验证
void validate_metadata_debug(operator_metadata_t *metadata) {
// 启用详细验证
validation_config_t *config = create_validation_config();
config->enable_type_checking = true;
config->enable_shape_checking = true;
config->enable_value_checking = true;
config->enable_consistency_checking = true;
config->verbose = true;
// 执行验证
validation_result_t *result = validate_operator_metadata(metadata, config);
// 打印详细结果
if (result->is_valid) {
printf("Validation: PASSED\n");
} else {
printf("Validation: FAILED\n");
printf("Errors:\n");
for (int i = 0; i < result->num_errors; i++) {
printf(" %d. %s\n", i + 1, result->errors[i]);
printf(" Location: %s:%d\n", result->errors[i].file, result->errors[i].line);
}
}
}
2. 元数据比较
c
// 元数据比较
void compare_metadata_debug(operator_metadata_t *metadata1, operator_metadata_t *metadata2) {
// 比较元数据
version_diff_t *diff = compare_metadata_versions(metadata1, metadata2);
printf("Metadata Comparison:\n");
printf(" Same: %s\n", diff->is_same ? "Yes" : "No");
printf(" Added: %d\n", diff->num_added);
printf(" Removed: %d\n", diff->num_removed);
printf(" Modified: %d\n", diff->num_modified);
// 打印详细信息
if (diff->num_added > 0) {
printf(" Added attributes:\n");
for (int i = 0; i < diff->num_added; i++) {
printf(" - %s\n", diff->added[i]);
}
}
}
3. 元数据追踪
c
// 元数据追踪
void track_metadata_usage(operator_metadata_t *metadata) {
// 创建元数据追踪器
metadata_tracker_t *tracker = create_metadata_tracker();
// 注册元数据
register_metadata(tracker, metadata);
// 追踪使用情况
metadata_usage_t *usage = get_metadata_usage(tracker, metadata->name);
printf("Metadata Usage:\n");
printf(" Name: %s\n", usage->name);
printf(" Times used: %d\n", usage->times_used);
printf(" Last used: %s\n", usage->last_used);
printf(" Performance: %.2f ms\n", usage->performance * 1000);
}
常见问题
问题1:元数据验证失败
c
// 错误:元数据定义不完整
input_metadata->dtype = DATA_TYPE_FLOAT32;
// 缺少shape信息!
// 正确:完整的元数据定义
input_metadata->dtype = DATA_TYPE_FLOAT32;
input_metadata->shape[0] = -1;
input_metadata->shape[1] = 3;
input_metadata->shape[2] = 224;
input_metadata->shape[3] = 224;
input_metadata->ndim = 4;
问题2:版本兼容性问题
c
// 错误:版本不兼容
load_operator_metadata("conv2d_v2.0.json", v1_config); // 不兼容!
// 正确:使用正确的版本
load_operator_metadata("conv2d_v1.0.json", v1_config); // 兼容
问题3:元数据加载慢
c
// 错误:未使用缓存
metadata = load_operator_metadata("conv2d_metadata.json", config); // 每次都加载!
// 正确:使用缓存
metadata = get_metadata_from_cache(cache, "Conv2D");
if (metadata == NULL) {
metadata = load_operator_metadata("conv2d_metadata.json", config);
add_metadata_to_cache(cache, "Conv2D", metadata);
} // 快!
应用场景总结
场景一:模型元数据定义
用于模型元数据定义。
场景二:元数据驱动的算子执行
用于元数据驱动的算子执行。
场景三:元数据版本管理
用于元数据版本管理。
场景四:元数据验证
用于元数据验证。
总结
MetaDef与Ops-NN的组合:
- 元数据定义
- 算子集成
- 自动生成
- 版本管理
- 验证机制
通过元数据定义和神经网络算子的协同,实现了高效的模型表示和执行,是模型管理的重要工具。
相关链接
metadef仓库地址:https://atomgit.com/cann/metadef
ops-nn仓库地址:https://atomgit.com/cann/ops-nn
CANN组织地址:https://atomgit.com/cann
ge仓库地址:https://atomgit.com/cann/ge