地物分类

科研小白 新人上路3 个月前
python·tensorflow·目标识别·遥感影像·地物分类·城市规划·林业测量
基于python深度学习遥感影像地物分类与目标识别、分割实践技术我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。深度卷积网络采用“端对端
高-老师3 个月前
pytorch·深度学习·卷积神经网络·无人机·地物分类·遥感影像目标检测·无人机航拍
【视频教程】基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践技术应用随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。但同时由于无人机飞行高度低、获取目标类型多、以及环境复杂等因素使得对无人机获取的数据处理越来越复杂。最近借助深度学习方法,基于卷积神经网络的无人机目标识别取得了令人印象深刻的结果。深度卷积网络采用“端对端”的特征学习,通过多层的特征抽取,它揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征,这也是其在无人机影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。
AIzmjl9 个月前
pytorch·深度学习·地物分类
PyTorch深度学习:如何提升遥感影像的地物分类精度?我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。深度卷积网络采用“端对端
阿狸是一只猫9 个月前
pytorch·深度学习·机器学习·自动化·地物分类
PyTorch深度学习:如何实现遥感影像的自动化地物分类?我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。深度卷积网络采用“端对端