【视频教程】基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践技术应用

随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。但同时由于无人机飞行高度低、获取目标类型多、以及环境复杂等因素使得对无人机获取的数据处理越来越复杂。最近借助深度学习方法,基于卷积神经网络的无人机目标识别取得了令人印象深刻的结果。深度卷积网络采用"端对端"的特征学习,通过多层的特征抽取,它揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征,这也是其在无人机影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,以PyTorch等为主体的深度学习平台也为使用卷积神经网络提供了程序框架。然而卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度大,各类深度学习平台的掌握也并不容易。

相关推荐
go546315846514 分钟前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法
Blossom.11815 分钟前
基于深度学习的图像分类:使用Capsule Networks实现高效分类
人工智能·python·深度学习·神经网络·机器学习·分类·数据挖掘
宇称不守恒4.018 分钟前
2025暑期—05神经网络-卷积神经网络
深度学习·神经网络·cnn
格林威1 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉
巫婆理发2222 小时前
神经网络(多层感知机)(第二课第二周)
人工智能·深度学习·神经网络
Coovally AI模型快速验证2 小时前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
xw33734095642 小时前
彩色转灰度的核心逻辑:三种经典方法及原理对比
人工智能·python·深度学习·opencv·计算机视觉
贝塔西塔3 小时前
PytorchLightning最佳实践基础篇
pytorch·深度学习·lightning·编程框架
ReinaXue4 小时前
大模型【进阶】(五):低秩适配矩阵LORA的深度认识
人工智能·深度学习·神经网络·语言模型·自然语言处理·transformer
小猪和纸箱4 小时前
通过Python交互式控制台理解Conv1d的输入输出
pytorch