Transformer实战(27)——参数高效微调(Parameter Efficient Fine-Tuning,PEFT)微调已经成为人工智能领域中一种流行的建模范式,尤其是在迁移学习中。在之前的学习中,所有模型都是基于更新所有参数的方式进行的。因此,可以称为全微调 (Full Fine-Tuning) (也称为全模型微调或全参数微调)。在本节中,我们将介绍部分微调策略。随着大语言模型 (Large Language Model, LLM) 参数的不断增加,微调和推理的成本变得极其高昂。全参数微调需要更新所有参数,并为每个任务单独保存大模型,但这一过程在内存和运行时间方面都非常昂贵。例如 BERT 有 3 亿个参数,T5 有