常微分方程

CodeShare8 小时前
机器学习·常微分方程·数据驱动建模
从噪声数据中发现可解释的常微分方程数据驱动的可解释模型发现方法在过去十年中备受关注。现有方法通常采用预定义的函数形式或基函数,导致模型缺乏物理意义和可解释性,且难以反映系统真实物理特性。本文提出一种无监督参数估计方法:首先基于齐次线性常系数常微分方程(ODE)的解析解形式假设近似通解,再通过样条变换线性估计ODE的系数。该方法能从噪声数据中生成高保真平滑函数形式,并利用样条近似从函数形式中提取线性独立的梯度信息构建梯度矩阵,进而通过线性系统求解ODE系数。案例研究表明,该方法无需正则化即可高精度发现稀疏ODE,且对噪声数据具有强鲁棒性,适
亚图跨际9 个月前
矩阵·常微分方程·化学反应·细胞信号·细胞决策过程·质量作用动力学·平衡流形
MATLAB细胞干扰素信号矩阵和微分方程计算分析在 MATLAB 中,Jacobian(雅可比矩阵)用于描述多变量函数对每个变量的偏导数。对于给定的多变量向量函数 ( f(x) ),雅可比矩阵定义为函数各个分量对变量的偏导数组成的矩阵,通常用于优化、非线性系统的解、微分方程数值解等问题。
配电网和matlab2 年前
开发语言·matlab·常微分方程
matlab使用教程(25)—常微分方程(ODE)选项前两个解分量是微小物体的坐标,因此针对一个分量绘制另一个分量可以得到物体的轨迹。orbitode.m 中嵌套的事件函数将搜索两个事件。一个事件查找距离起点最远的点,另一个事件查找宇宙飞船返回到起点的点。即使积分器使用的步长并非通过事件位置确定,也会准确定位事件。在此示例中,指定过零方向的功能非常重要。返回到起点的点和距离起点最远的点具有相同的事件值,并由交叉方向来区分这两个点。为此行为编码的事件函数为