从噪声数据中发现可解释的常微分方程

摘要

数据驱动的可解释模型发现方法在过去十年中备受关注。现有方法通常采用预定义的函数形式或基函数,导致模型缺乏物理意义和可解释性,且难以反映系统真实物理特性。本文提出一种无监督参数估计方法:首先基于齐次线性常系数常微分方程(ODE)的解析解形式假设近似通解,再通过样条变换线性估计ODE的系数。该方法能从噪声数据中生成高保真平滑函数形式,并利用样条近似从函数形式中提取线性独立的梯度信息构建梯度矩阵,进而通过线性系统求解ODE系数。案例研究表明,该方法无需正则化即可高精度发现稀疏ODE,且对噪声数据具有强鲁棒性,适用于真实实验环境下的物理现象数据驱动学习。

关键内容

  1. 方法框架

    • 假设近似通解形式与齐次线性常系数ODE的解析解一致。
    • 通过样条变换将梯度信息转化为线性独立的基向量,构建梯度矩阵。
    • 利用线性系统直接求解ODE系数,避免迭代优化。
  2. 技术优势

    • 抗噪性:样条平滑处理可有效抑制噪声干扰。
    • 稀疏性:自动生成稀疏系数,无需额外正则化。
    • 可解释性:所得ODE具有明确物理意义,符合真实系统动力学。
  3. 实验验证

    • 20页论文包含11幅图表与7个案例,验证方法在复杂噪声环境下的有效性。

应用场景

适用于计算物理、工程系统建模等领域,尤其适合实验数据存在噪声时的动力学规律挖掘。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
weixin_4640780733 分钟前
机器学习sklearn:处理缺失值
人工智能·机器学习·sklearn
2202_7567496936 分钟前
04 基于sklearn的机械学习-梯度下降(上)
人工智能·算法·机器学习
牛客企业服务2 小时前
2025校招AI应用:校园招聘的革新与挑战
大数据·人工智能·机器学习·面试·职场和发展·求职招聘·语音识别
计算机科研圈2 小时前
不靠海量数据,精准喂养大模型!上交Data Whisperer:免训练数据选择法,10%数据逼近全量效果
人工智能·深度学习·机器学习·llm·ai编程
欧阳小猜3 小时前
机器学习②【字典特征提取、文本特征处理(TF-IDF)、数据标准化与归一化、特征降维】
人工智能·机器学习·tf-idf
Monkey的自我迭代3 小时前
逻辑回归参数调优实战指南
python·机器学习·逻辑回归·数据处理·下采样·过采样
行然梦实5 小时前
世代距离(GD)和反转世代距离(IGD)详析
人工智能·算法·机器学习·数学建模
Swaggy T6 小时前
自动驾驶控制算法——PID算法
人工智能·算法·机器学习·自动驾驶
CodeShare7 小时前
通过胜率理解偏好学习的理论与优化方法
机器学习·偏好学习·胜率优化