从噪声数据中发现可解释的常微分方程

摘要

数据驱动的可解释模型发现方法在过去十年中备受关注。现有方法通常采用预定义的函数形式或基函数,导致模型缺乏物理意义和可解释性,且难以反映系统真实物理特性。本文提出一种无监督参数估计方法:首先基于齐次线性常系数常微分方程(ODE)的解析解形式假设近似通解,再通过样条变换线性估计ODE的系数。该方法能从噪声数据中生成高保真平滑函数形式,并利用样条近似从函数形式中提取线性独立的梯度信息构建梯度矩阵,进而通过线性系统求解ODE系数。案例研究表明,该方法无需正则化即可高精度发现稀疏ODE,且对噪声数据具有强鲁棒性,适用于真实实验环境下的物理现象数据驱动学习。

关键内容

  1. 方法框架

    • 假设近似通解形式与齐次线性常系数ODE的解析解一致。
    • 通过样条变换将梯度信息转化为线性独立的基向量,构建梯度矩阵。
    • 利用线性系统直接求解ODE系数,避免迭代优化。
  2. 技术优势

    • 抗噪性:样条平滑处理可有效抑制噪声干扰。
    • 稀疏性:自动生成稀疏系数,无需额外正则化。
    • 可解释性:所得ODE具有明确物理意义,符合真实系统动力学。
  3. 实验验证

    • 20页论文包含11幅图表与7个案例,验证方法在复杂噪声环境下的有效性。

应用场景

适用于计算物理、工程系统建模等领域,尤其适合实验数据存在噪声时的动力学规律挖掘。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
AI小云14 小时前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
L.fountain16 小时前
机器学习shap分析案例
人工智能·机器学习
weixin_4296302616 小时前
机器学习-第一章
人工智能·机器学习
Cedric111316 小时前
机器学习中的距离总结
人工智能·机器学习
寒月霜华1 天前
机器学习-数据标注
人工智能·机器学习
Godspeed Zhao1 天前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383921 天前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
救救孩子把1 天前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
蒋星熠1 天前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
Hcoco_me1 天前
什么是机器学习?
人工智能·机器学习