tcn

机器学习之心1 年前
pytorch·transformer·tcn
时序预测 | Pytorch实现TCN-Transformer的时间序列预测基于TCN-Transformer模型的时间序列预测,可以用于做光伏发电功率预测,风速预测,风力发电功率预测,负荷预测等,python程序 python代码,pytorch
机器学习之心1 年前
多变量时间序列预测·tcn·时间卷积神经网络
多维时序 | MATLAB实现TCN时间卷积神经网络多变量时间序列预测MATLAB实现TCN时间卷积神经网络多变量时间序列预测MATLAB实现TCN时间卷积神经网络多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2021及以上 1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测; 2.主程序文件,运行即可,残差连接用于构建深层网络。每个残差块包括了一维卷积层和层归一化层,这些卷积层的输出被添加到输入,从而构成了残差结构。这有助于减轻梯度消失问题并使网络更容易训练; 3.命令窗口输出R2、MAE、MAP
机器学习之心1 年前
tcn-bigru·时间卷积双向门控循环单元·时间序列预测·bigru·tcn
时序预测 | MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测1.MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测; 2.运行环境为Matlab2021b; 3.单变量时间序列预测; 4.data为数据集,excel数据,单变量时间序列,MainTCN_BiGRUTS.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出R2、MSE、RMSE、MAE、MAPE多指标评价; TCN 模型通过一维因果卷积对过去的数据进行提取,保证时序性,残差连接加快收敛速度,扩张卷积实现时序特征提取。BiGRU模型作为循环神经网络的变种,具有非线性拟合
机器学习之心1 年前
gru·时间序列预测·tcn-gru·tcn·时间卷积门控循环单元
时序预测 | MATLAB实现TCN-GRU时间卷积门控循环单元时间序列预测1.MATLAB实现TCN-GRU时间卷积门控循环单元时间序列预测; 2.运行环境为Matlab2021b; 3.单变量时间序列预测; 4.data为数据集,excel数据,单变量时间序列,MainTCN_BiGRUTS.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出R2、MSE、RMSE、MAE、MAPE多指标评价; TCN 模型通过一维因果卷积对过去的数据进行提取,保证时序性,残差连接加快收敛速度,扩张卷积实现时序特征提取。BiGRU模型作为循环神经网络的变种,具有非线性拟合能力,能