论文笔记--Distilling the Knowledge in a Neural Network

论文笔记--Distilling the Knowledge in a Neural Network

  • [1. 文章简介](#1. 文章简介)
  • [2. 文章概括](#2. 文章概括)
  • [3 文章重点技术](#3 文章重点技术)
    • [3.1 Soft Target](#3.1 Soft Target)
    • [3.2 蒸馏Distillation](#3.2 蒸馏Distillation)
  • [4. 文章亮点](#4. 文章亮点)
  • [5. 原文传送门](#5. 原文传送门)

1. 文章简介

  • 标题:Distilling the Knowledge in a Neural Network
  • 作者:Hinton, Geoffrey, Oriol Vinyals, Jeff Dean
  • 日期:2015
  • 期刊:arxiv

2. 文章概括

文章提出了一种将大模型压缩的新的思路:蒸馏distillation。通过蒸馏,可以将很大的模型压缩为轻量级的模型,从而提升推理阶段的速率。

3 文章重点技术

3.1 Soft Target

随着模型的参数量越来越大,如何从训练好的大模型(教师模型)学习一个轻量级的小模型(学生模型)是一个重要课题。传统的hard-target训练直接学习大模型的预测结果,无法学习到不正确的类别之间的相对关系。比如给定一张宝马的照片,假设教师模型给出的预测结果为宝马,学生模型只从教师模型中学习到"宝马"这一个标签信息。事实上,教师模型还会给出其它类别的信息,比如将宝马预测为垃圾车为0.02,将宝马预测为胡萝卜的概率仅为0.0001,但学生模型没有学习到垃圾车和胡萝卜之间的区别。

我们需要一种方法来使得学生学习到正确的标签,以及错误标签的相对关系。文章提出"soft-target",即通过学习教师模型的预测概率分布来训练小模型。

3.2 蒸馏Distillation

对一个分类模型,假设教师模型的输出层给出的logits为 z i z_i zi,然后通过计算Softmax得到预测概率: q i = exp ⁡ ( z i / T ) ∑ j exp ⁡ ( z j / T ) q_i = \frac {\exp (z_i/T)}{\sum_j \exp (z_j/T)} qi=∑jexp(zj/T)exp(zi/T),其中相比于传统的SoftMax增加了 T T T表示温度,用于控制输出概率分布的平滑度。 T T T越大,不同类别之间的差异越不明显,即分布越平滑。可以参考 e x p exp exp的函数曲线来理解:给定 x 1 , x 2 x_1, x_2 x1,x2,由当 T T T越大时, x 1 / T , x 2 / T x_1/T, x_2/T x1/T,x2/T对应的导数越小(导数即为 exp ⁡ ( x ) \exp(x) exp(x),也可参考下图),从而差距越小,分布越平滑。当 T = 1 T=1 T=1时,即传统的Softmax。

我们希望学生模型满足:1) 模型可以学习到教师模型的预测概率,即soft targets; 2)学生模型可以预测真实的标签。从而我们可以考虑2个目标函数: L hard \mathcal{L}{\text{hard}} Lhard和 L soft \mathcal{L}{\text{soft}} Lsoft。首先我们记学生模型和教师模型的logits分别为 z i , v i z_i, v_i zi,vi,预测概率分别为 q i , p i q_i, p_i qi,pi,真实标签为labels,则

  • L hard = Cross Entropy ( labels , arg max ⁡ i ( exp ⁡ ( z i / T ) ∑ j exp ⁡ ( z j / T ) ) ) \mathcal{L}_{\text{hard}}=\text{Cross Entropy}\left(\text{labels}, \argmax_i \left(\frac {\exp (z_i/T)}{\sum_j \exp (z_j/T)}\right)\right) Lhard=Cross Entropy(labels,argmaxi(∑jexp(zj/T)exp(zi/T)))
  • L soft = Cross Entropy ( p , q ) = Cross Entropy ( ( exp ⁡ ( v i / T ) ∑ j exp ⁡ ( v j / T ) ) , ( exp ⁡ ( z i / T ) ∑ j exp ⁡ ( z j / T ) ) ) \mathcal{L}{\text{soft}}=\text{Cross Entropy}\left(p, q \right) =\text{Cross Entropy}\left((\frac {\exp (v_i/T)}{\sum_j \exp (v_j/T)}), (\frac {\exp (z_i/T)}{\sum_j \exp (z_j/T)})\right) Lsoft=Cross Entropy(p,q)=Cross Entropy((∑jexp(vj/T)exp(vi/T)),(∑jexp(zj/T)exp(zi/T)))
    考虑 L soft \mathcal{L}
    {\text{soft}} Lsoft的梯度 ∂ L soft ∂ z k = ∂ ( − ∑ i p i log ⁡ q i ) ∂ z k = − ∑ i p i q i ∂ q i ∂ z k = − p k q k ∂ q k ∂ z k − ∑ i ≠ k p i q i ∂ q i ∂ z k = − 1 T p k q k q k ( 1 − q k ) + ∑ i ≠ k p i q i exp ⁡ ( z i / T ) ( ∑ j exp ⁡ ( z j / T ) ) 2 1 T exp ⁡ ( z k / T ) = 1 T ( − p k ( 1 − q k ) + ∑ i ≠ k p i q i q i q k ) = 1 T ( − p k + ∑ i p i q k ) = 1 T ( q k − p k ) = 1 T ( exp ⁡ ( z k / T ) ∑ j exp ⁡ ( z j / T ) − exp ⁡ ( v k / T ) ∑ j exp ⁡ ( v j / T ) ) \frac {\partial \mathcal{L}{\text{soft}}}{\partial z_k} = \frac {\partial (-\sum_i p_i \log q_i)}{\partial z_k} = -\sum_i \frac {p_i}{q_i} \frac{\partial q_i}{\partial z_k} = -\frac {p_k}{q_k} \frac{\partial q_k}{\partial z_k}-\sum{i\neq k} \frac {p_i}{q_i} \frac{\partial q_i}{\partial z_k} \\=-\frac 1T \frac {p_k}{q_k} q_k (1-q_k) +\sum_{i\neq k} \frac {p_i}{q_i} \frac {\exp (z_i/T)}{(\sum_j \exp (z_j/T))^2} \frac 1T \exp (z_k/T) \\= \frac 1T (-p_k (1-q_k) + \sum_{i\neq k} \frac {p_i}{q_i} q_i q_k )= \frac 1T (-p_k + \sum_i p_i q_k ) \\= \frac 1T (q_k - p_k) = \frac 1T \left(\frac {\exp (z_k/T)}{\sum_j \exp (z_j/T)} - \frac {\exp (v_k/T)}{\sum_j \exp (v_j/T)}\right) ∂zk∂Lsoft=∂zk∂(−∑ipilogqi)=−i∑qipi∂zk∂qi=−qkpk∂zk∂qk−i=k∑qipi∂zk∂qi=−T1qkpkqk(1−qk)+i=k∑qipi(∑jexp(zj/T))2exp(zi/T)T1exp(zk/T)=T1(−pk(1−qk)+i=k∑qipiqiqk)=T1(−pk+i∑piqk)=T1(qk−pk)=T1(∑jexp(zj/T)exp(zk/T)−∑jexp(vj/T)exp(vk/T)),当 T T T相比于 z i , v i z_i, v_i zi,vi等logits量级比较高时,有 z i / T → 0 , v i / T → 0 z_i/T\to 0, v_i/T \to 0 zi/T→0,vi/T→0,从而由泰勒公式上式近似为 ∂ L soft ∂ z k ≈ 1 T ( 1 + z k / T N + ∑ j z j / T − 1 + v k / T N + ∑ j v j / T ) \frac {\partial \mathcal{L}{\text{soft}}}{\partial z_k} \approx \frac 1T \left(\frac {1+z_k/T}{N + \sum_j z_j/T} - \frac {1+v_k/T}{N + \sum_j v_j/T}\right) ∂zk∂Lsoft≈T1(N+∑jzj/T1+zk/T−N+∑jvj/T1+vk/T),假设logits都是零均值的,则有 ∂ L soft ∂ z k ≈ 1 N T 2 ( z k − v k ) \frac {\partial \mathcal{L}{\text{soft}}}{\partial z_k} \approx \frac 1{NT^2} (z_k - v_k) ∂zk∂Lsoft≈NT21(zk−vk)。从而当温度比较高时,我们的目标近似为最小化 1 2 ( z k − v k ) 2 \frac 12 (z_k - v_k)^2 21(zk−vk)2(上式的原函数,不考虑常数项),即最小化logits的MSE函数。温度越低,我们越关注小于均值的logits。
      最终的损失函数为上述hard和soft损失的加权求和。

4. 文章亮点

文章提出了基于soft-target的蒸馏方法,可以让学生模型学习到教师模型的预测概率分布,从而增强学生模型的泛化能力。实验表明,在MNIST和speech recognition数据上,基于soft target的学生模型可以提取到更多有用的信息,且可以有效防止过拟合的发生。

5. 原文传送门

Distilling the Knowledge in a Neural Network

相关推荐
Bearnaise1 天前
GaussianDreamer: Fast Generation from Text to 3D Gaussians——点云论文阅读(11)
论文阅读·人工智能·python·深度学习·opencv·计算机视觉·3d
IRevers1 天前
2024强化学习的结构化剪枝模型RL-Pruner原理及实践
人工智能·深度学习·学习·算法·机器学习·剪枝·模型压缩
PD我是你的真爱粉1 天前
Quality minus junk论文阅读
论文阅读
regret~2 天前
【论文笔记】LoFLAT: Local Feature Matching using Focused Linear Attention Transformer
论文阅读·深度学习·transformer
Maker~2 天前
23、论文阅读:基于多分辨率特征学习的层次注意力聚合GAN水下图像增强
论文阅读·学习·生成对抗网络
Q_yt2 天前
【图像压缩感知】论文阅读:Content-Aware Scalable Deep Compressed Sensing
论文阅读
江海寄2 天前
[论文阅读] 异常检测 Deep Learning for Anomaly Detection: A Review(三)总结梳理-疑点记录
论文阅读·人工智能·深度学习·机器学习·计算机视觉·语言模型·视觉检测
江海寄2 天前
[论文阅读] 异常检测 Deep Learning for Anomaly Detection: A Review (四)三种分类方法对比
论文阅读·人工智能·深度学习·机器学习·计算机视觉·分类
代码太难敲啊喂2 天前
【Anomaly Detection论文阅读记录】Resnet网络与WideResNet网络
论文阅读·人工智能
YunTM2 天前
革新预测领域:频域融合时间序列预测,深度学习新篇章,科研涨点利器
论文阅读·人工智能·深度学习