pandas小技巧-花哨的DataFrame

最近github上发现了一个库(plottable),可以用简单的方式就设置出花哨的 DataFrame 样式。

github上的地址:github.com/znstrider/p...

1. 安装

通过 pip 安装:

bash 复制代码
pip install plottable

2. 行的颜色

使用 plottable的API,调整背景和字体的颜色非常方便。

2.1. 奇偶行不同颜色

奇偶行设置不同的颜色,让表格看起来有层次感。

python 复制代码
import numpy as np

from plottable import Table

data = np.random.random((5, 5))
data = data.round(2)
df = pd.DataFrame(data, columns=["A", "B", "C", "D", "E"])
tbl = Table(df,
            odd_row_color="#f0f0f0",
            even_row_color="#e0f6ff"
           )

2.2. 背景和字体颜色

对于复杂的显示要求,可以逐行设置背景色和字体的颜色。

python 复制代码
import numpy as np

from plottable import Table

data = np.random.random((5, 5))
data = data.round(2)
df = pd.DataFrame(data, columns=["A", "B", "C", "D", "E"])
tbl = Table(df)
tbl.rows[0].set_facecolor("red")
tbl.rows[0].set_fontcolor("white")

tbl.rows[1].set_facecolor("blue")
tbl.rows[1].set_fontcolor("white")

tbl.rows[2].set_facecolor("green")
tbl.rows[2].set_fontcolor("white")

tbl.rows[3].set_facecolor("gray")
tbl.rows[3].set_fontcolor("white")

tbl.rows[4].set_facecolor("purple")
tbl.rows[4].set_fontcolor("white")

上例中每一行的背景设置了不同的颜色,字体都设置为白色。

3. 值的显示

调整颜色,字体属于基本的设置,plottable强大之处在于可用图形化的方式来显示数据,

让我们可以一眼看出数据的大小和差距。

比如,下面的示例用 ColumnDefinition 来使用 plottable内置的数据显示方式。

python 复制代码
import numpy as np

from matplotlib.colors import LinearSegmentedColormap

from plottable import ColumnDefinition, Table
from plottable.formatters import decimal_to_percent
from plottable.plots import bar, percentile_bars, percentile_stars, progress_donut

data = np.random.random((5, 5))
data = data.round(2)
df = pd.DataFrame(data, columns=["A", "B", "C", "D", "E"])

print(df) # 显示原始数据

cmap = LinearSegmentedColormap.from_list(
    name="bugw", colors=["#ffffff", "#f2fbd2", "#c9ecb4", "#93d3ab", "#35b0ab"], N=256
)
tab = Table(
    df,
    textprops={"ha": "center"},
    column_definitions=[
        ColumnDefinition("index", textprops={"ha": "left"}),
        ColumnDefinition("A", plot_fn=percentile_bars, plot_kw={"is_pct": True}),
        ColumnDefinition(
            "B", width=1.5, plot_fn=percentile_stars, plot_kw={"is_pct": True}
        ),
        ColumnDefinition(
            "C",
            plot_fn=progress_donut,
            plot_kw={"is_pct": True, "formatter": "{:.0%}"},
        ),
        ColumnDefinition(
            "D",
            width=1.25,
            plot_fn=bar,
            plot_kw={
                "cmap": cmap,
                "plot_bg_bar": True,
                "annotate": True,
                "height": 0.5,
                "lw": 0.5,
                "formatter": decimal_to_percent,
            },
        ),
    ],
)

原始数据显示:

plottable强化之后显示:

4. 图文混合

最后,演示一个通过 plottable 在表格中插入图片的示例。

其中数据来源是 2023 王者荣耀春季赛各个战队的数据

主要为了演示表格中插入图片(图片是各个战队的logo),所以只挑选了4个列来展示。

python 复制代码
import pandas as pd
import numpy as np

import matplotlib
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap

from plottable import ColumnDefinition, Table
from plottable.formatters import decimal_to_percent
from plottable.plots import bar, percentile_bars, percentile_stars, progress_donut
from plottable.plots import circled_image

matplotlib.rcParams["font.sans-serif"] = ["Microsoft YaHei Mono"]
matplotlib.rcParams["axes.unicode_minus"] = False

df = pd.read_csv("d:/share/data.csv")
df = df.set_index("排名")
df["胜率"] = df["胜场"] / df["比赛场次"]
df["logo"] = "d:/share/wzry-logos/" + df["战队"] + ".png"
df = df.drop(columns=["胜场", "比赛场次", "场均KDA"])

fig, ax = plt.subplots(figsize=(12, 12))

col_defs = [
        ColumnDefinition("排名", textprops={"ha": "left"}),
        ColumnDefinition(
            name="logo",
            title="",
            textprops={"ha": "center"},
            width=0.5,
            plot_fn=circled_image,
        ),
        ColumnDefinition("战队", textprops={"ha": "center"}),
        ColumnDefinition(
            "胜率",
            plot_fn=progress_donut,
            plot_kw={"is_pct": True, "formatter": "{:.0%}"},
        ),
    ]

tbl = Table(
    df,
    ax=ax,
    textprops={"ha": "center", "fontsize": 20},
    column_definitions=col_defs,
)

上面示例中用到的数据和logo图标分享在:
url11.ctfile.com/f/45455611-... (访问密码: 6872)

有兴趣可以试试看上面的示例,或者继续深入探索 plottable 的强大显示功能。

相关推荐
liuweidong08026 小时前
【Pandas】pandas Rolling window sem
pandas
万粉变现经纪人7 小时前
如何解决 pip install 代理报错 407 Proxy Authentication Required 问题
windows·python·pycharm·beautifulsoup·bug·pandas·pip
人大博士的交易之路9 小时前
龙虎榜——20251203
数学建模·数据挖掘·数据分析·缠论·龙虎榜·道琼斯结构
数据智研12 小时前
【数据分享】古丝绸之路路线矢量数据
大数据·信息可视化·数据分析
泰迪智能科技12 小时前
分享|高校商务数据分析实验室建设项目资源+实训软件+产融服务
信息可视化·数据挖掘·数据分析
星云数灵12 小时前
机器学习入门实战:使用Scikit-learn完成鸢尾花分类
人工智能·python·机器学习·ai·数据分析·pandas·python数据分析
生信大杂烩13 小时前
空间转录组数据分析环境搭建:使用 Conda 和 VSCode 实现本地/远程无缝开发
python·数据分析
咚咚王者13 小时前
人工智能之数据分析 Pandas:第三章 DataFrame
人工智能·数据分析·pandas
人大博士的交易之路16 小时前
今日行情明日机会——20251203
数学建模·数据挖掘·数据分析·缠论·道琼斯结构
AI-嘉文哥哥16 小时前
ADAS自动驾驶-前车碰撞预警(追尾预警、碰撞检测)系统
人工智能·深度学习·yolo·目标检测·数据分析·课程设计·qt5