pandas小技巧-花哨的DataFrame

最近github上发现了一个库(plottable),可以用简单的方式就设置出花哨的 DataFrame 样式。

github上的地址:github.com/znstrider/p...

1. 安装

通过 pip 安装:

bash 复制代码
pip install plottable

2. 行的颜色

使用 plottable的API,调整背景和字体的颜色非常方便。

2.1. 奇偶行不同颜色

奇偶行设置不同的颜色,让表格看起来有层次感。

python 复制代码
import numpy as np

from plottable import Table

data = np.random.random((5, 5))
data = data.round(2)
df = pd.DataFrame(data, columns=["A", "B", "C", "D", "E"])
tbl = Table(df,
            odd_row_color="#f0f0f0",
            even_row_color="#e0f6ff"
           )

2.2. 背景和字体颜色

对于复杂的显示要求,可以逐行设置背景色和字体的颜色。

python 复制代码
import numpy as np

from plottable import Table

data = np.random.random((5, 5))
data = data.round(2)
df = pd.DataFrame(data, columns=["A", "B", "C", "D", "E"])
tbl = Table(df)
tbl.rows[0].set_facecolor("red")
tbl.rows[0].set_fontcolor("white")

tbl.rows[1].set_facecolor("blue")
tbl.rows[1].set_fontcolor("white")

tbl.rows[2].set_facecolor("green")
tbl.rows[2].set_fontcolor("white")

tbl.rows[3].set_facecolor("gray")
tbl.rows[3].set_fontcolor("white")

tbl.rows[4].set_facecolor("purple")
tbl.rows[4].set_fontcolor("white")

上例中每一行的背景设置了不同的颜色,字体都设置为白色。

3. 值的显示

调整颜色,字体属于基本的设置,plottable强大之处在于可用图形化的方式来显示数据,

让我们可以一眼看出数据的大小和差距。

比如,下面的示例用 ColumnDefinition 来使用 plottable内置的数据显示方式。

python 复制代码
import numpy as np

from matplotlib.colors import LinearSegmentedColormap

from plottable import ColumnDefinition, Table
from plottable.formatters import decimal_to_percent
from plottable.plots import bar, percentile_bars, percentile_stars, progress_donut

data = np.random.random((5, 5))
data = data.round(2)
df = pd.DataFrame(data, columns=["A", "B", "C", "D", "E"])

print(df) # 显示原始数据

cmap = LinearSegmentedColormap.from_list(
    name="bugw", colors=["#ffffff", "#f2fbd2", "#c9ecb4", "#93d3ab", "#35b0ab"], N=256
)
tab = Table(
    df,
    textprops={"ha": "center"},
    column_definitions=[
        ColumnDefinition("index", textprops={"ha": "left"}),
        ColumnDefinition("A", plot_fn=percentile_bars, plot_kw={"is_pct": True}),
        ColumnDefinition(
            "B", width=1.5, plot_fn=percentile_stars, plot_kw={"is_pct": True}
        ),
        ColumnDefinition(
            "C",
            plot_fn=progress_donut,
            plot_kw={"is_pct": True, "formatter": "{:.0%}"},
        ),
        ColumnDefinition(
            "D",
            width=1.25,
            plot_fn=bar,
            plot_kw={
                "cmap": cmap,
                "plot_bg_bar": True,
                "annotate": True,
                "height": 0.5,
                "lw": 0.5,
                "formatter": decimal_to_percent,
            },
        ),
    ],
)

原始数据显示:

plottable强化之后显示:

4. 图文混合

最后,演示一个通过 plottable 在表格中插入图片的示例。

其中数据来源是 2023 王者荣耀春季赛各个战队的数据

主要为了演示表格中插入图片(图片是各个战队的logo),所以只挑选了4个列来展示。

python 复制代码
import pandas as pd
import numpy as np

import matplotlib
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap

from plottable import ColumnDefinition, Table
from plottable.formatters import decimal_to_percent
from plottable.plots import bar, percentile_bars, percentile_stars, progress_donut
from plottable.plots import circled_image

matplotlib.rcParams["font.sans-serif"] = ["Microsoft YaHei Mono"]
matplotlib.rcParams["axes.unicode_minus"] = False

df = pd.read_csv("d:/share/data.csv")
df = df.set_index("排名")
df["胜率"] = df["胜场"] / df["比赛场次"]
df["logo"] = "d:/share/wzry-logos/" + df["战队"] + ".png"
df = df.drop(columns=["胜场", "比赛场次", "场均KDA"])

fig, ax = plt.subplots(figsize=(12, 12))

col_defs = [
        ColumnDefinition("排名", textprops={"ha": "left"}),
        ColumnDefinition(
            name="logo",
            title="",
            textprops={"ha": "center"},
            width=0.5,
            plot_fn=circled_image,
        ),
        ColumnDefinition("战队", textprops={"ha": "center"}),
        ColumnDefinition(
            "胜率",
            plot_fn=progress_donut,
            plot_kw={"is_pct": True, "formatter": "{:.0%}"},
        ),
    ]

tbl = Table(
    df,
    ax=ax,
    textprops={"ha": "center", "fontsize": 20},
    column_definitions=col_defs,
)

上面示例中用到的数据和logo图标分享在:
url11.ctfile.com/f/45455611-... (访问密码: 6872)

有兴趣可以试试看上面的示例,或者继续深入探索 plottable 的强大显示功能。

相关推荐
谅望者18 小时前
数据分析笔记02:数值方法
大数据·数据库·笔记·数据挖掘·数据分析
追风少年ii18 小时前
脚本复习--高精度空转(Xenium、CosMx)的细胞邻域分析(R版本)
python·数据分析·空间·单细胞
YangYang9YangYan18 小时前
高职单招与统招比较及职业发展指南
大数据·人工智能·数据分析
德昂信息dataondemand21 小时前
BI需求分析的双层陷阱
数据分析·需求分析
cx330上的猫1 天前
【数据分析-Excel】常用函数汇总
数据分析·excel
熠熠仔1 天前
QGIS 3.34+ 网络分析基础数据自动化生成:从脚本到应用
python·数据分析
追风少年ii2 天前
单细胞空间联合分析新贵--iStar
python·数据分析·空间·单细胞
F_D_Z2 天前
DataFrame中.iloc 属性
pandas·dataframe·.iloc
Yeats_Liao2 天前
时序数据库系列(五):InfluxDB聚合函数与数据分析
java·后端·数据分析·时序数据库
on_pluto_3 天前
【推荐系统14】数据分析:以阿里天池新闻推荐为例学习
人工智能·学习·数据挖掘·数据分析·推荐算法