Kafka集群——(区别于Master/Slave架构的的分布式集群)

Kafka角色介绍:

  1. Producer:消息生产者:

  2. Broker: kafka实例,可以理解为一台kafka服务器,kafka cluster 是由多个broker构成的集群。

  3. Topic: 消息主题,理解为消息队列,kafka数据就保存在topic里。

  4. Partition: 消息分区,一个Topic会有多个分区, 分区的作用是负载均衡,同一个topic在不同分区内的数据是不重复的,目的是提高kafka的吞吐率。

  5. Replication:副本,每一个分区都会有副本(Follower),作用是做备用,主分区(Leader)会将数据备份到副分区(Follower),且副分区不会和主分区在同一个broker中。当主分区出现故障,会从副分区中重新推举一个leader。

  6. Message: 信息,底层是封装的ProduceRecord

  7. Consumer: 消费者,消息的消费方,消息出口。

  8. Consumer Group: 消费者组,可以将多个消费者组成一个消费者组,作用是开启多线程,加快消息的消费速度,提高吞吐率。同一分区中的数据只能由消费组中的一个消费者消费,消费者组可以消费同一Topic的不同分区的数据,实现多线程消费信息。一般消费者组中的消费者数和分区数相同。

  9. Zookeeper: kafka集群的负载均衡,保存集群的元数据(offset,稀疏索引),实现集群的高可用性。

Kafka的分区机制:

  1. 有key的话,根据Key进行hash 操作分区。

  2. 无key的话,采用轮询的方式进行分区。

kafka的发布订阅模式:

  1. 基于NIO, 异步响应,多线程。

举例:

角色分配:

2个Producer, 3个Broker, 2个Partiton,3个Replication , 2个ConsumerGroup .每个Group 有2个Consumer。

数据流转过程:

  1. Producer 生成一个ProduceRecord消息,topic为TopicA,分区机制将消息分到不同分区中,partition0, partition1.
  2. 每个Topic生成3个副本分区,分别放到不同的broker上,并选举其中一个为Leader,其余的为Follower.数据写入时先向Leader分区写入数据,然后由Leader分区向其余的Follower分区写入数据。
  3. 消息写入成功,会生成RecordMetaData元数据,记录Topic, 分区信息,offset(偏移量), 存入zk中。
  4. 消息消费:消费者组Consumer Group A 中的consumer0,consumer1分别访问TopicA的不同分区,优先访问Leader分区。
相关推荐
代码的知行者1 小时前
分布式数据库中间件-Sharding-JDBC
数据库·分布式·中间件
啾啾Fun1 小时前
Java面试题:分布式ID时钟回拨怎么处理?序列号耗尽了怎么办?
java·分布式·分布式id·八股
计算机毕设定制辅导-无忧学长1 小时前
Kafka 可靠性保障:消息确认与事务机制(一)
分布式·kafka·linq
掘金-我是哪吒5 小时前
分布式微服务系统架构第145集:Jeskson文档-微服务分布式系统架构
分布式·微服务·云原生·架构·系统架构
G探险者10 小时前
为什么 Zookeeper 越扩越慢,而 Nacos 却越扩越快?
分布式·后端
Pitayafruit12 小时前
跟着大厂学架构01:如何利用开源方案,复刻B站那套“永不崩溃”的评论系统?
spring boot·分布式·后端
bxlj_jcj14 小时前
Kafka环境搭建全攻略:从Docker到Java实战
java·docker·kafka
苏格拉没有底_coder17 小时前
引入 Kafka 消息队列解耦热点操作
分布式·kafka
顧棟19 小时前
Zookeeper 3.8.4 安装部署帮助手册
分布式·zookeeper
陈卓41020 小时前
MQ选型及RocketMQ架构总览
中间件·kafka·消息队列·rabbitmq·rocketmq