计算机视觉:图像质量评价指标之 PSNR 和 SSIM

1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比

由上可见,PSNR相对MSE多了一个峰值,MSE是绝对误差,再加上峰值是一个相对误差指标

一般地,针对 uint8 数据,最大像素值为 255,;针对浮点型数据,最大像素值为 1。

上面是针对灰度图像的计算方法,如果是彩色图像,通常有三种方法来计算。

  • 分别计算 RGB 三个通道的 PSNR,然后取平均值。
  • 计算 RGB 三通道的 MSE ,然后再除以 3 。
  • 将图片转化为 YCbCr 格式,然后只计算 Y 分量也就是亮度分量的 PSNR。

其中,第二和第三种方法比较常见。

python 复制代码
# im1 和 im2 都为灰度图像,uint8 类型

# method 1
diff = im1 - im2
mse = np.mean(np.square(diff))
psnr = 10 * np.log10(255 * 255 / mse)

# method 2
psnr = skimage.measure.compare_psnr(im1, im2, 255)

compare_psnr(im_true, im_test, data_range=None) 函数原型可见此处

针对超光谱图像,我们需要针对不同波段分别计算 PSNR,然后取平均值,这个指标称为 MPSNR。

在有损图像和视频压缩中,PSNR的典型值在30到50 dB之间,前提是位深度为8位,位深度越高越好。当12位时,PSNR值为60 dB或更高时,认为图像的处理质量较高。对于16位数据,典型的PSNR值在60 ~ 80db之间。无线传输质量损失的可接受值被认为是大约20 dB到25 dB。(供参考)

2. SSIM (Structural SIMilarity) 结构相似性

python 复制代码
# im1 和 im2 都为灰度图像,uint8 类型
ssim = skimage.measure.compare_ssim(im1, im2, data_range=255)

compare_ssim(X, Y, win_size=None, gradient=False, data_range=None, multichannel=False, gaussian_weights=False, full=False, **kwargs) 函数原型可见此处

针对超光谱图像,我们需要针对不同波段分别计算 SSIM,然后取平均值,这个指标称为 MSSIM。

相关推荐
通街市密人有3 分钟前
PanTS: The Pancreatic Tumor Segmentation Dataset
人工智能·深度学习·计算机视觉
高工智能汽车19 分钟前
出圈or出局?AI汽车“急速驶来”,市场淘汰赛一触即发
人工智能·汽车
Qdgr_21 分钟前
传统报警难题频现,安全运行隐患重重
大数据·人工智能·安全
rit843249926 分钟前
MATLAB基于voronoi生成三维圆柱形
开发语言·人工智能·matlab
xuedaobian37 分钟前
AI IDE里的 context 工程
人工智能·aigc·visual studio code
心 爱心 爱39 分钟前
DAS3D: Dual-modality Anomaly Synthesis for 3D Anomaly Detection 论文精读
计算机视觉·异常检测·重建·判别器·多模态目标异常检测·三维异常检测·异常合成
PyAIExplorer1 小时前
图像处理中的霍夫变换:直线检测与圆检测
图像处理·人工智能
千宇宙航2 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第七课——获取RAW图像
图像处理·计算机视觉·fpga开发
格林威2 小时前
Baumer工业相机堡盟工业相机如何通过DeepOCR模型识别判断数值和字符串的范围和相似度(C#)
开发语言·人工智能·python·数码相机·计算机视觉·c#·视觉检测
不爱学英文的码字机器2 小时前
Claude Code: Best practices for agentic coding
人工智能