计算机视觉:图像质量评价指标之 PSNR 和 SSIM

1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比

由上可见,PSNR相对MSE多了一个峰值,MSE是绝对误差,再加上峰值是一个相对误差指标

一般地,针对 uint8 数据,最大像素值为 255,;针对浮点型数据,最大像素值为 1。

上面是针对灰度图像的计算方法,如果是彩色图像,通常有三种方法来计算。

  • 分别计算 RGB 三个通道的 PSNR,然后取平均值。
  • 计算 RGB 三通道的 MSE ,然后再除以 3 。
  • 将图片转化为 YCbCr 格式,然后只计算 Y 分量也就是亮度分量的 PSNR。

其中,第二和第三种方法比较常见。

python 复制代码
# im1 和 im2 都为灰度图像,uint8 类型

# method 1
diff = im1 - im2
mse = np.mean(np.square(diff))
psnr = 10 * np.log10(255 * 255 / mse)

# method 2
psnr = skimage.measure.compare_psnr(im1, im2, 255)

compare_psnr(im_true, im_test, data_range=None) 函数原型可见此处

针对超光谱图像,我们需要针对不同波段分别计算 PSNR,然后取平均值,这个指标称为 MPSNR。

在有损图像和视频压缩中,PSNR的典型值在30到50 dB之间,前提是位深度为8位,位深度越高越好。当12位时,PSNR值为60 dB或更高时,认为图像的处理质量较高。对于16位数据,典型的PSNR值在60 ~ 80db之间。无线传输质量损失的可接受值被认为是大约20 dB到25 dB。(供参考)

2. SSIM (Structural SIMilarity) 结构相似性

python 复制代码
# im1 和 im2 都为灰度图像,uint8 类型
ssim = skimage.measure.compare_ssim(im1, im2, data_range=255)

compare_ssim(X, Y, win_size=None, gradient=False, data_range=None, multichannel=False, gaussian_weights=False, full=False, **kwargs) 函数原型可见此处

针对超光谱图像,我们需要针对不同波段分别计算 SSIM,然后取平均值,这个指标称为 MSSIM。

相关推荐
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信7 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235867 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs7 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮7 小时前
AI 视觉连载2:灰度图
人工智能
yunfuuwqi8 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云8 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
人工智能培训8 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
wenzhangli78 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
后端小肥肠9 小时前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent