计算机视觉:图像质量评价指标之 PSNR 和 SSIM

1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比

由上可见,PSNR相对MSE多了一个峰值,MSE是绝对误差,再加上峰值是一个相对误差指标

一般地,针对 uint8 数据,最大像素值为 255,;针对浮点型数据,最大像素值为 1。

上面是针对灰度图像的计算方法,如果是彩色图像,通常有三种方法来计算。

  • 分别计算 RGB 三个通道的 PSNR,然后取平均值。
  • 计算 RGB 三通道的 MSE ,然后再除以 3 。
  • 将图片转化为 YCbCr 格式,然后只计算 Y 分量也就是亮度分量的 PSNR。

其中,第二和第三种方法比较常见。

python 复制代码
# im1 和 im2 都为灰度图像,uint8 类型

# method 1
diff = im1 - im2
mse = np.mean(np.square(diff))
psnr = 10 * np.log10(255 * 255 / mse)

# method 2
psnr = skimage.measure.compare_psnr(im1, im2, 255)

compare_psnr(im_true, im_test, data_range=None) 函数原型可见此处

针对超光谱图像,我们需要针对不同波段分别计算 PSNR,然后取平均值,这个指标称为 MPSNR。

在有损图像和视频压缩中,PSNR的典型值在30到50 dB之间,前提是位深度为8位,位深度越高越好。当12位时,PSNR值为60 dB或更高时,认为图像的处理质量较高。对于16位数据,典型的PSNR值在60 ~ 80db之间。无线传输质量损失的可接受值被认为是大约20 dB到25 dB。(供参考)

2. SSIM (Structural SIMilarity) 结构相似性

python 复制代码
# im1 和 im2 都为灰度图像,uint8 类型
ssim = skimage.measure.compare_ssim(im1, im2, data_range=255)

compare_ssim(X, Y, win_size=None, gradient=False, data_range=None, multichannel=False, gaussian_weights=False, full=False, **kwargs) 函数原型可见此处

针对超光谱图像,我们需要针对不同波段分别计算 SSIM,然后取平均值,这个指标称为 MSSIM。

相关推荐
Warren2Lynch8 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale8 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant8 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138348 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo8 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms18 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑8 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei8 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing9 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
yusur9 小时前
边缘智算新引擎 DPU 驱动的算力革新
人工智能·科技·rdma·dpu