随手笔记——3D−2D:PnP

随手笔记------3D−2D:PnP

说明

PnP(Perspective-n-Point)是求解3D到2D点对运动的方法。它描述了当知道n个3D空间点及其投影位置时,如何估计相机的位姿。

理论

特征点的3D位置可以由三角化或者RGB-D相机的深度图确定。因此,在双目或RGB-D的视觉里程计中,可以直接使用PnP估计相机运动。而在单目视觉里程计中,必须先进行初始化,然后才能使用 PnP。

PnP 问题有很多种求解方法,例如,用 3 对点估计位姿的 P3P、直接线性变换(DLT)、EPnP(Efficient PnP)、UPnP,等等。此外,还能用非线性优化的方式,构建最小二乘问题并迭代求解,也就是Bundle Adjustment。

源代码

用 OpenCV 提供的 EPnP 求解 PnP 问题,然后通过 g2o 对结果进行优化

复制代码
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/sparse_optimizer.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/solver.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <sophus/se3.hpp>
#include <chrono>

using namespace std;
using namespace cv;

void find_feature_matches(
  const Mat &img_1, const Mat &img_2,
  std::vector<KeyPoint> &keypoints_1,
  std::vector<KeyPoint> &keypoints_2,
  std::vector<DMatch> &matches);

// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K);

// BA by g2o
typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
typedef vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> VecVector3d;

void bundleAdjustmentG2O(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose
);

// BA by gauss-newton
void bundleAdjustmentGaussNewton(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose
);

int main(int argc, char **argv) {
  if (argc != 5) {
    cout << "usage: pose_estimation_3d2d img1 img2 depth1 depth2" << endl;
    return 1;
  }
  //-- 读取图像
  Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
  Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
  assert(img_1.data && img_2.data && "Can not load images!");

  vector<KeyPoint> keypoints_1, keypoints_2;
  vector<DMatch> matches;
  find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
  cout << "一共找到了" << matches.size() << "组匹配点" << endl;

  // 建立3D点
  Mat d1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED);       // 深度图为16位无符号数,单通道图像
  Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
  vector<Point3f> pts_3d;
  vector<Point2f> pts_2d;
  for (DMatch m:matches) {
    ushort d = d1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
    if (d == 0)   // bad depth
      continue;
    float dd = d / 5000.0;
    Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
    pts_3d.push_back(Point3f(p1.x * dd, p1.y * dd, dd));
    pts_2d.push_back(keypoints_2[m.trainIdx].pt);
  }

  cout << "3d-2d pairs: " << pts_3d.size() << endl;

  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  Mat r, t;
  solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
  Mat R;
  cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve pnp in opencv cost time: " << time_used.count() << " seconds." << endl;

  cout << "R=" << endl << R << endl;
  cout << "t=" << endl << t << endl;

  VecVector3d pts_3d_eigen;
  VecVector2d pts_2d_eigen;
  for (size_t i = 0; i < pts_3d.size(); ++i) {
    pts_3d_eigen.push_back(Eigen::Vector3d(pts_3d[i].x, pts_3d[i].y, pts_3d[i].z));
    pts_2d_eigen.push_back(Eigen::Vector2d(pts_2d[i].x, pts_2d[i].y));
  }

  cout << "calling bundle adjustment by gauss newton" << endl;
  Sophus::SE3d pose_gn;
  t1 = chrono::steady_clock::now();
  bundleAdjustmentGaussNewton(pts_3d_eigen, pts_2d_eigen, K, pose_gn);
  t2 = chrono::steady_clock::now();
  time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve pnp by gauss newton cost time: " << time_used.count() << " seconds." << endl;

  cout << "calling bundle adjustment by g2o" << endl;
  Sophus::SE3d pose_g2o;
  t1 = chrono::steady_clock::now();
  bundleAdjustmentG2O(pts_3d_eigen, pts_2d_eigen, K, pose_g2o);
  t2 = chrono::steady_clock::now();
  time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve pnp by g2o cost time: " << time_used.count() << " seconds." << endl;
  return 0;
}

void find_feature_matches(const Mat &img_1, const Mat &img_2,
                          std::vector<KeyPoint> &keypoints_1,
                          std::vector<KeyPoint> &keypoints_2,
                          std::vector<DMatch> &matches) {
  //-- 初始化
  Mat descriptors_1, descriptors_2;
  // used in OpenCV3
  Ptr<FeatureDetector> detector = ORB::create();
  Ptr<DescriptorExtractor> descriptor = ORB::create();
  // use this if you are in OpenCV2
  // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
  // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
  Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
  //-- 第一步:检测 Oriented FAST 角点位置
  detector->detect(img_1, keypoints_1);
  detector->detect(img_2, keypoints_2);

  //-- 第二步:根据角点位置计算 BRIEF 描述子
  descriptor->compute(img_1, keypoints_1, descriptors_1);
  descriptor->compute(img_2, keypoints_2, descriptors_2);

  //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
  vector<DMatch> match;
  // BFMatcher matcher ( NORM_HAMMING );
  matcher->match(descriptors_1, descriptors_2, match);

  //-- 第四步:匹配点对筛选
  double min_dist = 10000, max_dist = 0;

  //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
  for (int i = 0; i < descriptors_1.rows; i++) {
    double dist = match[i].distance;
    if (dist < min_dist) min_dist = dist;
    if (dist > max_dist) max_dist = dist;
  }

  printf("-- Max dist : %f \n", max_dist);
  printf("-- Min dist : %f \n", min_dist);

  //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
  for (int i = 0; i < descriptors_1.rows; i++) {
    if (match[i].distance <= max(2 * min_dist, 30.0)) {
      matches.push_back(match[i]);
    }
  }
}

Point2d pixel2cam(const Point2d &p, const Mat &K) {
  return Point2d
    (
      (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
      (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
    );
}

void bundleAdjustmentGaussNewton(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose) {
  typedef Eigen::Matrix<double, 6, 1> Vector6d;
  const int iterations = 10;
  double cost = 0, lastCost = 0;
  double fx = K.at<double>(0, 0);
  double fy = K.at<double>(1, 1);
  double cx = K.at<double>(0, 2);
  double cy = K.at<double>(1, 2);

  for (int iter = 0; iter < iterations; iter++) {
    Eigen::Matrix<double, 6, 6> H = Eigen::Matrix<double, 6, 6>::Zero();
    Vector6d b = Vector6d::Zero();

    cost = 0;
    // compute cost
    for (int i = 0; i < points_3d.size(); i++) {
      Eigen::Vector3d pc = pose * points_3d[i];
      double inv_z = 1.0 / pc[2];
      double inv_z2 = inv_z * inv_z;
      Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);

      Eigen::Vector2d e = points_2d[i] - proj;

      cost += e.squaredNorm();
      Eigen::Matrix<double, 2, 6> J;
      J << -fx * inv_z,
        0,
        fx * pc[0] * inv_z2,
        fx * pc[0] * pc[1] * inv_z2,
        -fx - fx * pc[0] * pc[0] * inv_z2,
        fx * pc[1] * inv_z,
        0,
        -fy * inv_z,
        fy * pc[1] * inv_z2,
        fy + fy * pc[1] * pc[1] * inv_z2,
        -fy * pc[0] * pc[1] * inv_z2,
        -fy * pc[0] * inv_z;

      H += J.transpose() * J;
      b += -J.transpose() * e;
    }

    Vector6d dx;
    dx = H.ldlt().solve(b);

    if (isnan(dx[0])) {
      cout << "result is nan!" << endl;
      break;
    }

    if (iter > 0 && cost >= lastCost) {
      // cost increase, update is not good
      cout << "cost: " << cost << ", last cost: " << lastCost << endl;
      break;
    }

    // update your estimation
    pose = Sophus::SE3d::exp(dx) * pose;
    lastCost = cost;

    cout << "iteration " << iter << " cost=" << std::setprecision(12) << cost << endl;
    if (dx.norm() < 1e-6) {
      // converge
      break;
    }
  }

  cout << "pose by g-n: \n" << pose.matrix() << endl;
}

/// vertex and edges used in g2o ba
class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

  virtual void setToOriginImpl() override {
    _estimate = Sophus::SE3d();
  }

  /// left multiplication on SE3
  virtual void oplusImpl(const double *update) override {
    Eigen::Matrix<double, 6, 1> update_eigen;
    update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
    _estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
  }

  virtual bool read(istream &in) override {}

  virtual bool write(ostream &out) const override {}
};

class EdgeProjection : public g2o::BaseUnaryEdge<2, Eigen::Vector2d, VertexPose> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

  EdgeProjection(const Eigen::Vector3d &pos, const Eigen::Matrix3d &K) : _pos3d(pos), _K(K) {}

  virtual void computeError() override {
    const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
    Sophus::SE3d T = v->estimate();
    Eigen::Vector3d pos_pixel = _K * (T * _pos3d);
    pos_pixel /= pos_pixel[2];
    _error = _measurement - pos_pixel.head<2>();
  }

  virtual void linearizeOplus() override {
    const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
    Sophus::SE3d T = v->estimate();
    Eigen::Vector3d pos_cam = T * _pos3d;
    double fx = _K(0, 0);
    double fy = _K(1, 1);
    double cx = _K(0, 2);
    double cy = _K(1, 2);
    double X = pos_cam[0];
    double Y = pos_cam[1];
    double Z = pos_cam[2];
    double Z2 = Z * Z;
    _jacobianOplusXi
      << -fx / Z, 0, fx * X / Z2, fx * X * Y / Z2, -fx - fx * X * X / Z2, fx * Y / Z,
      0, -fy / Z, fy * Y / (Z * Z), fy + fy * Y * Y / Z2, -fy * X * Y / Z2, -fy * X / Z;
  }

  virtual bool read(istream &in) override {}

  virtual bool write(ostream &out) const override {}

private:
  Eigen::Vector3d _pos3d;
  Eigen::Matrix3d _K;
};

void bundleAdjustmentG2O(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose) {

  // 构建图优化,先设定g2o
  typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 3>> BlockSolverType;  // pose is 6, landmark is 3
  typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
  // 梯度下降方法,可以从GN, LM, DogLeg 中选
  auto solver = new g2o::OptimizationAlgorithmGaussNewton(
    g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
  g2o::SparseOptimizer optimizer;     // 图模型
  optimizer.setAlgorithm(solver);   // 设置求解器
  optimizer.setVerbose(true);       // 打开调试输出

  // vertex
  VertexPose *vertex_pose = new VertexPose(); // camera vertex_pose
  vertex_pose->setId(0);
  vertex_pose->setEstimate(Sophus::SE3d());
  optimizer.addVertex(vertex_pose);

  // K
  Eigen::Matrix3d K_eigen;
  K_eigen <<
          K.at<double>(0, 0), K.at<double>(0, 1), K.at<double>(0, 2),
    K.at<double>(1, 0), K.at<double>(1, 1), K.at<double>(1, 2),
    K.at<double>(2, 0), K.at<double>(2, 1), K.at<double>(2, 2);

  // edges
  int index = 1;
  for (size_t i = 0; i < points_2d.size(); ++i) {
    auto p2d = points_2d[i];
    auto p3d = points_3d[i];
    EdgeProjection *edge = new EdgeProjection(p3d, K_eigen);
    edge->setId(index);
    edge->setVertex(0, vertex_pose);
    edge->setMeasurement(p2d);
    edge->setInformation(Eigen::Matrix2d::Identity());
    optimizer.addEdge(edge);
    index++;
  }

  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  optimizer.setVerbose(true);
  optimizer.initializeOptimization();
  optimizer.optimize(10);
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
  cout << "pose estimated by g2o =\n" << vertex_pose->estimate().matrix() << endl;
  pose = vertex_pose->estimate();
}

雅可比矩阵求解


注:本文内容仅限于学习使用,如有侵权,请联系!

相关推荐
岑梓铭3 分钟前
考研408《计算机组成原理》复习笔记,第五章(5)——CPU的【微程序控制器】
笔记·考研·408·计算机组成原理·计组
白云偷星子9 分钟前
MySQL笔记13
数据库·笔记·mysql
optimistic_chen24 分钟前
【Java EE进阶 --- SpringBoot】Mybatis - plus 操作数据库
数据库·spring boot·笔记·java-ee·mybatis·mybatis-plus
凉、介43 分钟前
ARM 总线技术 —— AMBA 入门
arm开发·笔记·学习
日更嵌入式的打工仔1 小时前
嵌入式入门:APP+BSP+HAL 三层分级架构浅析
笔记·单片机·嵌入式硬件·学习
长桥夜波1 小时前
【第十八周】机器学习笔记07
人工智能·笔记·机器学习
摇滚侠1 小时前
Spring Boot 3零基础教程,yml文件中配置和类的属性绑定,笔记15
spring boot·redis·笔记
摇滚侠2 小时前
Spring Boot 3零基础教程,WEB 开发 HTTP 缓存机制 笔记29
spring boot·笔记·缓存
大白的编程日记.2 小时前
【Linux学习笔记】线程同步与互斥之生产者消费者模型
linux·笔记·学习
新子y2 小时前
【小白笔记】strip的含义
笔记·python