数据仓库_LT,留存,回访的设计思路

今天面试问到了一个问题,假设我们的用户信息是天级别统计的,那么如果计算多天的留存与回访就需要扫描多个分区,这样计算资源比较多,如何进行优化。

首先要介绍一下,留存,回访,lt 这3个基本概念

基本概念

n日留存 :n日后是否访问app

n日回访 :n日活是否访问某个业务模块(app中的某一板块,当这个板块为app时,留存==回访),类似于留存

lt : 用户的生命周期,相当于整体的活跃天数。 详细参考 :用户全生命周期价值(LTV)指标如何计算 - 传播蛙

思路

我们需要构建map存储用户的历史活跃天数,然后利用日期作为key进行快速索引

构建历史全量活跃天数表

with all_act_tmp as (
	select 
		device_id,
		map('${date}',1) as act_date_map
	from test_dwd.dwd_user_device_active_di
	where date = '${date}'
	
	union all
	select 
		device_id,
		act_date_map
	from test_dwd.user_dwd_device_active_df
	where date = '${date-1}'
)


insert overwrite table test_dwd.user_dwd_device_active_df partition(date='${date}')
select 
	device_id,
	union_map(act_date_map) 
from 	
	all_act_tmp
group by device_id 

计算相关指标

select 
	device_id,
	map_keys(act_date_map) as act_date_list
	size(act_date_map) as all_lt_cnt,
	if(act_date_map['${date}']=1,1,0) as is_act,
	if(act_date_map['${date-1}'=1,1,0]) as is_act_1d,
	if(act_date_map['${date-3}'=1,1,0]) as is_act_3d,
	if(act_date_map['${date-7}'=1,1,0]) as is_act_7d,
	...
	size(sub_map(act_date_map,'${date-2}','${date}')) as lt_3d,
	size(sub_map(act_date_map,'${date-6}','${date}')) as lt_7d,
	size(sub_map(act_date_map,'${date-14}','${date}')) as lt_15d
	...	
from 
	test_dwd.user_dwd_device_active_df 

相关功能函数

sub_map 函数 UDF

sub_map(map,start,end,byKey)

  • Returns a sub map from mao, in which key(or value) is between start and end
相关推荐
袋鼠云数栈几秒前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
小白学大数据1 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
15年网络推广青哥2 小时前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
节点。csn2 小时前
Hadoop yarn安装
大数据·hadoop·分布式
csding112 小时前
写入hive metastore报问题Permission denied: user=hadoop,inode=“/user/hive”
数据仓库·hive·hadoop
arnold662 小时前
探索 ElasticSearch:性能优化之道
大数据·elasticsearch·性能优化
NiNg_1_2344 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式
成长的小牛2335 小时前
es使用knn向量检索中numCandidates和k应该如何配比更合适
大数据·elasticsearch·搜索引擎
goTsHgo5 小时前
在 Spark 上实现 Graph Embedding
大数据·spark·embedding
程序猿小柒5 小时前
【Spark】Spark SQL执行计划-精简版
大数据·sql·spark