数据仓库_LT,留存,回访的设计思路

今天面试问到了一个问题,假设我们的用户信息是天级别统计的,那么如果计算多天的留存与回访就需要扫描多个分区,这样计算资源比较多,如何进行优化。

首先要介绍一下,留存,回访,lt 这3个基本概念

基本概念

n日留存 :n日后是否访问app

n日回访 :n日活是否访问某个业务模块(app中的某一板块,当这个板块为app时,留存==回访),类似于留存

lt : 用户的生命周期,相当于整体的活跃天数。 详细参考 :用户全生命周期价值(LTV)指标如何计算 - 传播蛙

思路

我们需要构建map存储用户的历史活跃天数,然后利用日期作为key进行快速索引

构建历史全量活跃天数表

复制代码
with all_act_tmp as (
	select 
		device_id,
		map('${date}',1) as act_date_map
	from test_dwd.dwd_user_device_active_di
	where date = '${date}'
	
	union all
	select 
		device_id,
		act_date_map
	from test_dwd.user_dwd_device_active_df
	where date = '${date-1}'
)


insert overwrite table test_dwd.user_dwd_device_active_df partition(date='${date}')
select 
	device_id,
	union_map(act_date_map) 
from 	
	all_act_tmp
group by device_id 

计算相关指标

复制代码
select 
	device_id,
	map_keys(act_date_map) as act_date_list
	size(act_date_map) as all_lt_cnt,
	if(act_date_map['${date}']=1,1,0) as is_act,
	if(act_date_map['${date-1}'=1,1,0]) as is_act_1d,
	if(act_date_map['${date-3}'=1,1,0]) as is_act_3d,
	if(act_date_map['${date-7}'=1,1,0]) as is_act_7d,
	...
	size(sub_map(act_date_map,'${date-2}','${date}')) as lt_3d,
	size(sub_map(act_date_map,'${date-6}','${date}')) as lt_7d,
	size(sub_map(act_date_map,'${date-14}','${date}')) as lt_15d
	...	
from 
	test_dwd.user_dwd_device_active_df 

相关功能函数

sub_map 函数 UDF

sub_map(map,start,end,byKey)

  • Returns a sub map from mao, in which key(or value) is between start and end
相关推荐
代码匠心38 分钟前
从零开始学Flink:数据源
java·大数据·后端·flink
Lx3523 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
武子康6 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
expect7g7 小时前
Flink KeySelector
大数据·后端·flink
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop