数据仓库_LT,留存,回访的设计思路

今天面试问到了一个问题,假设我们的用户信息是天级别统计的,那么如果计算多天的留存与回访就需要扫描多个分区,这样计算资源比较多,如何进行优化。

首先要介绍一下,留存,回访,lt 这3个基本概念

基本概念

n日留存 :n日后是否访问app

n日回访 :n日活是否访问某个业务模块(app中的某一板块,当这个板块为app时,留存==回访),类似于留存

lt : 用户的生命周期,相当于整体的活跃天数。 详细参考 :用户全生命周期价值(LTV)指标如何计算 - 传播蛙

思路

我们需要构建map存储用户的历史活跃天数,然后利用日期作为key进行快速索引

构建历史全量活跃天数表

复制代码
with all_act_tmp as (
	select 
		device_id,
		map('${date}',1) as act_date_map
	from test_dwd.dwd_user_device_active_di
	where date = '${date}'
	
	union all
	select 
		device_id,
		act_date_map
	from test_dwd.user_dwd_device_active_df
	where date = '${date-1}'
)


insert overwrite table test_dwd.user_dwd_device_active_df partition(date='${date}')
select 
	device_id,
	union_map(act_date_map) 
from 	
	all_act_tmp
group by device_id 

计算相关指标

复制代码
select 
	device_id,
	map_keys(act_date_map) as act_date_list
	size(act_date_map) as all_lt_cnt,
	if(act_date_map['${date}']=1,1,0) as is_act,
	if(act_date_map['${date-1}'=1,1,0]) as is_act_1d,
	if(act_date_map['${date-3}'=1,1,0]) as is_act_3d,
	if(act_date_map['${date-7}'=1,1,0]) as is_act_7d,
	...
	size(sub_map(act_date_map,'${date-2}','${date}')) as lt_3d,
	size(sub_map(act_date_map,'${date-6}','${date}')) as lt_7d,
	size(sub_map(act_date_map,'${date-14}','${date}')) as lt_15d
	...	
from 
	test_dwd.user_dwd_device_active_df 

相关功能函数

sub_map 函数 UDF

sub_map(map,start,end,byKey)

  • Returns a sub map from mao, in which key(or value) is between start and end
相关推荐
zskj_zhyl2 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
哲科软件2 小时前
从“电话催维修“到“手机看进度“——售后服务系统开发如何重构客户体验
大数据·智能手机·重构
zzywxc7873 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
专注API从业者3 小时前
构建淘宝评论监控系统:API 接口开发与实时数据采集教程
大数据·前端·数据库·oracle
一瓣橙子4 小时前
缺少关键的 MapReduce 框架文件
大数据·mapreduce
永洪科技11 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
weixin_3077791311 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
上海锝秉工控14 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY14 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj16 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink