数据仓库_LT,留存,回访的设计思路

今天面试问到了一个问题,假设我们的用户信息是天级别统计的,那么如果计算多天的留存与回访就需要扫描多个分区,这样计算资源比较多,如何进行优化。

首先要介绍一下,留存,回访,lt 这3个基本概念

基本概念

n日留存 :n日后是否访问app

n日回访 :n日活是否访问某个业务模块(app中的某一板块,当这个板块为app时,留存==回访),类似于留存

lt : 用户的生命周期,相当于整体的活跃天数。 详细参考 :用户全生命周期价值(LTV)指标如何计算 - 传播蛙

思路

我们需要构建map存储用户的历史活跃天数,然后利用日期作为key进行快速索引

构建历史全量活跃天数表

复制代码
with all_act_tmp as (
	select 
		device_id,
		map('${date}',1) as act_date_map
	from test_dwd.dwd_user_device_active_di
	where date = '${date}'
	
	union all
	select 
		device_id,
		act_date_map
	from test_dwd.user_dwd_device_active_df
	where date = '${date-1}'
)


insert overwrite table test_dwd.user_dwd_device_active_df partition(date='${date}')
select 
	device_id,
	union_map(act_date_map) 
from 	
	all_act_tmp
group by device_id 

计算相关指标

复制代码
select 
	device_id,
	map_keys(act_date_map) as act_date_list
	size(act_date_map) as all_lt_cnt,
	if(act_date_map['${date}']=1,1,0) as is_act,
	if(act_date_map['${date-1}'=1,1,0]) as is_act_1d,
	if(act_date_map['${date-3}'=1,1,0]) as is_act_3d,
	if(act_date_map['${date-7}'=1,1,0]) as is_act_7d,
	...
	size(sub_map(act_date_map,'${date-2}','${date}')) as lt_3d,
	size(sub_map(act_date_map,'${date-6}','${date}')) as lt_7d,
	size(sub_map(act_date_map,'${date-14}','${date}')) as lt_15d
	...	
from 
	test_dwd.user_dwd_device_active_df 

相关功能函数

sub_map 函数 UDF

sub_map(map,start,end,byKey)

  • Returns a sub map from mao, in which key(or value) is between start and end
相关推荐
小鹿学程序14 小时前
4.子任务四:Hive 安装配置
数据仓库·hive·hadoop
小杜谈数14 小时前
企业BI建议--数据治理平台
大数据
谅望者15 小时前
数据分析笔记07:Python编程语言介绍
大数据·数据库·笔记·python·数据挖掘·数据分析
weixin_3077791316 小时前
基于AWS的应用程序可靠性提升架构优化方案——RDS多可用区与EC2弹性架构实践
数据库·数据仓库·架构·云计算·aws
中国国际健康产业博览会18 小时前
2026第35届中国国际健康产业博览会探索健康与科技的完美结合!
大数据·人工智能
Lansonli19 小时前
大数据Spark(七十三):Transformation转换算子glom和foldByKey使用案例
大数据·分布式·spark
中电金信19 小时前
2025新加坡金融科技节:看AI驱动的金融转型策略与“中国方案”
大数据·人工智能·金融
武子康1 天前
Java-174 FastFDS 从单机到分布式文件存储:实战与架构取舍
java·大数据·分布式·性能优化·系统架构·dfs·fastdfs
aitoolhub1 天前
重塑机器人未来:空间智能驱动产业智能化升级
大数据·人工智能·深度学习·机器学习·机器人·aigc
武子康1 天前
大数据-154 Apache Druid 架构与组件职责全解析 版本架构:Coordinator/Overlord/Historical 实战
大数据·后端·apache