数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

,若对于,均有,则存在下三角矩阵和上三角矩阵,使得

,若对于,均有,则存在唯一的下三角矩阵和上三角矩阵,使得,并且

0.2 Cholesky分解

对称正定,则存在一个对角元均为正数的下三角矩阵,使得

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵,使用迭代法 求解线性方程组过程中,一般需要以下流程进行:

  1. 给定一个初始向量
  2. 构造一个递推公式
  3. 不断递推,使其近似收敛于

下表列出了若干迭代算法的迭代公式。

|--------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 方法 | | 迭代公式 | 备注 |
| Jacobi迭代 | 非奇异 | | |
| Gausss-Seidel迭代 | 非奇异 | | |
| SOR迭代 | 非奇异 | | |
| Steepest Descent | 对称正定 | | |
| Conjugate Gradient | 对称正定 | 当 | |

二、Projection Method

投影法将线性方程组求解问题 转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令,构造列满秩矩阵,寻找,满足Petrov-Galerkin条件 ,即,均有称为搜索空间,称为约束空间。若时,称为正投影算法 ,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法 本质上也是一种投影法 ,其核心思想是在更小维度的Krylov子空间 内寻找满足精度要求的近似解。即令,构造了Krylov子空间 ,使得

选择不同的,就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版). 北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952.

相关推荐
cwtlw10 天前
Excel学习03
笔记·学习·其他·excel
老陈头聊SEO12 天前
AI与SEO关键词协同进化
其他
学视线12312 天前
汽车加气站操作工考试题库含答案【最新】
其他
nikoni2313 天前
Return ratio法计算环路增益
笔记·其他·硬件工程
cwtlw13 天前
Excel学习01
笔记·学习·其他·excel
职坐标在线14 天前
职坐标IT培训:嵌入式AI物联网开源项目精选
其他
老陈头聊SEO14 天前
AI时代SEO关键词革新
其他
binbinaijishu8819 天前
PyTorch:让深度学习飞入寻常百姓家(从零开始玩转张量与神经网络!)
pytorch·深度学习·神经网络·其他
zkinglin19 天前
AORSA编译指南
笔记·其他·能源
alphageek820 天前
【2025最新版】Node.js详细安装配置教程(Windows系统)附安装包
windows·其他·node.js