数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

,若对于,均有,则存在下三角矩阵和上三角矩阵,使得

,若对于,均有,则存在唯一的下三角矩阵和上三角矩阵,使得,并且

0.2 Cholesky分解

对称正定,则存在一个对角元均为正数的下三角矩阵,使得

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵,使用迭代法 求解线性方程组过程中,一般需要以下流程进行:

  1. 给定一个初始向量
  2. 构造一个递推公式
  3. 不断递推,使其近似收敛于

下表列出了若干迭代算法的迭代公式。

|--------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 方法 | | 迭代公式 | 备注 |
| Jacobi迭代 | 非奇异 | | |
| Gausss-Seidel迭代 | 非奇异 | | |
| SOR迭代 | 非奇异 | | |
| Steepest Descent | 对称正定 | | |
| Conjugate Gradient | 对称正定 | 当 | |

二、Projection Method

投影法将线性方程组求解问题 转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令,构造列满秩矩阵,寻找,满足Petrov-Galerkin条件 ,即,均有称为搜索空间,称为约束空间。若时,称为正投影算法 ,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法 本质上也是一种投影法 ,其核心思想是在更小维度的Krylov子空间 内寻找满足精度要求的近似解。即令,构造了Krylov子空间 ,使得

选择不同的,就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版). 北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952.

相关推荐
老陈头聊SEO20 小时前
AI与SEO策略结合下的关键词优化新发现
其他·搜索引擎·seo优化
原创资讯2 天前
暄桐教练日课·10天《梦瑛篆书千字文》报名啦~
其他
瑞惯科技2 天前
高精度双轴倾角传感器:物联网与水平监测的理想选择
其他
瑞惯科技2 天前
物联网角度传感器与双轴倾角传感器厂家的市场分析及技术发展
其他
执欣之手4 天前
FruitySeq
其他
未来预判局4 天前
合规安全的整形医院系统服务商排名
其他
井上泷奈4 天前
Win键失效解决方法
windows·经验分享·其他
易观Analysys5 天前
全域释放活力,增长质效兼收——2025年“双11”大促第一周期观察
其他
JiNan.YouQuan.Soft5 天前
Linux下编译Netgen
其他
罗光记6 天前
Quantinuum 发布新型量子计算机“Helios“
数据库·经验分享·其他·百度·twitter