数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

,若对于,均有,则存在下三角矩阵和上三角矩阵,使得

,若对于,均有,则存在唯一的下三角矩阵和上三角矩阵,使得,并且

0.2 Cholesky分解

对称正定,则存在一个对角元均为正数的下三角矩阵,使得

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵,使用迭代法 求解线性方程组过程中,一般需要以下流程进行:

  1. 给定一个初始向量
  2. 构造一个递推公式
  3. 不断递推,使其近似收敛于

下表列出了若干迭代算法的迭代公式。

|--------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 方法 | | 迭代公式 | 备注 |
| Jacobi迭代 | 非奇异 | | |
| Gausss-Seidel迭代 | 非奇异 | | |
| SOR迭代 | 非奇异 | | |
| Steepest Descent | 对称正定 | | |
| Conjugate Gradient | 对称正定 | 当 | |

二、Projection Method

投影法将线性方程组求解问题 转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令,构造列满秩矩阵,寻找,满足Petrov-Galerkin条件 ,即,均有称为搜索空间,称为约束空间。若时,称为正投影算法 ,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法 本质上也是一种投影法 ,其核心思想是在更小维度的Krylov子空间 内寻找满足精度要求的近似解。即令,构造了Krylov子空间 ,使得

选择不同的,就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版). 北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952.

相关推荐
t0577720 小时前
骑行防扎胎攻略!维乐ANGEL GLIDE坐垫伴骑无忧
其他
老陈头聊SEO20 小时前
AI驱动的SEO关键词策略优化全景解析
其他·搜索引擎·seo优化
罗光记1 天前
《人工智能安全治理研究报告(2025年)发布
数据库·其他·百度·新浪微博
李长太1 天前
如何用 Obsidian 记录日常笔记
其他
chuangrong1231 天前
地面地贴:一场静默革命,重塑人流秩序的智慧艺术
其他
_Lzk666888_2 天前
洛谷用户2002780求关注
c++·其他
老陈头聊SEO2 天前
生成引擎优化(GEO)在提升内容创作质量与用户体验中的重要作用与策略探讨
其他·搜索引擎·seo优化
SohongAI智慧办公2 天前
广州哪家支付系统稳定
其他
草莓熊Lotso2 天前
Linux系统进程调度优化:优先级策略与切换机制深度实践
linux·运维·服务器·c++·人工智能·经验分享·其他