数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

,若对于,均有,则存在下三角矩阵和上三角矩阵,使得

,若对于,均有,则存在唯一的下三角矩阵和上三角矩阵,使得,并且

0.2 Cholesky分解

对称正定,则存在一个对角元均为正数的下三角矩阵,使得

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵,使用迭代法 求解线性方程组过程中,一般需要以下流程进行:

  1. 给定一个初始向量
  2. 构造一个递推公式
  3. 不断递推,使其近似收敛于

下表列出了若干迭代算法的迭代公式。

|--------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 方法 | | 迭代公式 | 备注 |
| Jacobi迭代 | 非奇异 | | |
| Gausss-Seidel迭代 | 非奇异 | | |
| SOR迭代 | 非奇异 | | |
| Steepest Descent | 对称正定 | | |
| Conjugate Gradient | 对称正定 | 当 | |

二、Projection Method

投影法将线性方程组求解问题 转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令,构造列满秩矩阵,寻找,满足Petrov-Galerkin条件 ,即,均有称为搜索空间,称为约束空间。若时,称为正投影算法 ,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法 本质上也是一种投影法 ,其核心思想是在更小维度的Krylov子空间 内寻找满足精度要求的近似解。即令,构造了Krylov子空间 ,使得

选择不同的,就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版). 北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952.

相关推荐
老陈头聊SEO5 小时前
新手SEO指南如何快速入门与提升网站排名
其他
老陈头聊SEO6 小时前
提炼关键词的力量:AI驱动下的SEO优化策略
其他
打工的小李14 小时前
人才画像系统助力企业构建可持续发展的动态人才成长体系
其他
红点租赁系统开发14 小时前
金融租赁系统的发展与全球化战略实施探讨
其他
这是我581 天前
C++打小怪游戏
c++·其他·游戏·visual studio·小怪·大型·怪物
NullPointerZZZ1 天前
vue3和element-plus笔记
其他
gavin_gxh2 天前
SAP PP ECN CSAP_MAT_BOM_MAINTAIN
运维·经验分享·其他
安建资小栗子5 天前
一般行业安全管理人员考试题库分享
其他
cwtlw5 天前
SpringMVC的使用
java·开发语言·笔记·学习·其他
渊鱼L5 天前
ABAQUS随机球体骨料细观混凝土三维圆柱试件轴压开裂
其他