Sklearn-使用SVC对iris数据集进行分类

Sklearn-使用SVC对iris数据集进行分类

使用SVC对iris数据集进行分类预测

涉及内容包含:

  • 数据集的加载,训练集和测试集的划分
  • 训练svc模型,对测试集的预测
  • 输出混淆矩阵和分类报告
  • 使用Pipeline执行操作

iris数据集的加载

加载数据集

用DataFrame展示数据

划分训练集和测试集合

python 复制代码
from sklearn.datasets import load_iris
python 复制代码
iris = load_iris()
python 复制代码
iris.keys()
复制代码
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
python 复制代码
data = iris['data']
target = iris['target']

# 以DataFrame显示所有的数据
import pandas as pd
df = pd.DataFrame(data,columns=iris['feature_names']) 
df['target'] = target # 添加target列

| | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | target |
| 0 | 5.1 | 3.5 | 1.4 | 0.2 | 0 |
| 1 | 4.9 | 3.0 | 1.4 | 0.2 | 0 |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 | 0 |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 | 0 |
| 4 | 5.0 | 3.6 | 1.4 | 0.2 | 0 |
| ... | ... | ... | ... | ... | ... |
| 145 | 6.7 | 3.0 | 5.2 | 2.3 | 2 |
| 146 | 6.3 | 2.5 | 5.0 | 1.9 | 2 |
| 147 | 6.5 | 3.0 | 5.2 | 2.0 | 2 |
| 148 | 6.2 | 3.4 | 5.4 | 2.3 | 2 |

149 5.9 3.0 5.1 1.8 2

150 rows × 5 columns

python 复制代码
# 划分数据集:训练集和测试集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.3) # 测试集占30%。训练集70%

训练svc模型

  • 导入库文件
  • 初始化svc
  • 训练svc
python 复制代码
from sklearn.svm import SVC
# 初始化SVC
svc = SVC()
# 训练
svc.fit(x_train,y_train)
# 查看训练效果
print("训练集的精度",svc.score(x_train,y_train))
# 对测试集预测的精度
print("对测试集的预测效果:",svc.score(x_test,y_test))

# 对测试集进行预测
y_pre = svc.predict(x_test)
# 表格对比预测与实际结果
df2 = pd.DataFrame(data = {
    'predict':y_pre,
    'true':y_test
})
复制代码
训练集的精度 0.9714285714285714
对测试集的预测效果: 0.9555555555555556

输出混淆矩阵和分类报告

  • 输出混淆矩阵:查看每个类预测的成功与失败的情况
  • 输出分类报告:查看分类的性能
python 复制代码
from sklearn.metrics import confusion_matrix

# 输出混淆矩阵
con_matrix = confusion_matrix(y_test,y_pre)
print(con_matrix)
复制代码
[[12  0  0]
 [ 0 15  1]
 [ 0  1 16]]
python 复制代码
from sklearn.metrics import classification_report
# 输出分类报告
report = classification_report(y_test,y_pre,
                            target_names=iris['target_names'])
print(report)
复制代码
              precision    recall  f1-score   support

      setosa       1.00      1.00      1.00        12
  versicolor       0.94      0.94      0.94        16
   virginica       0.94      0.94      0.94        17

    accuracy                           0.96        45
   macro avg       0.96      0.96      0.96        45
weighted avg       0.96      0.96      0.96        45

相关推荐
Coder_Boy_2 分钟前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅19 分钟前
对 AI Native 架构的一些思考
人工智能
LinQingYanga1 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip1 小时前
过去24小时AI创业趋势分析
人工智能
SEO_juper1 小时前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo
pp起床1 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
方见华Richard1 小时前
自指-认知几何架构 可行性边界白皮书(务实版)
人工智能·经验分享·交互·原型模式·空间计算
冬奇Lab1 小时前
AI时代的"工具自由":我是如何进入细糠时代的
人工智能·ai编程
天天爱吃肉82181 小时前
跟着创意天才周杰伦学新能源汽车研发测试!3年从工程师到领域专家的成长秘籍!
数据库·python·算法·分类·汽车
CODECOLLECT1 小时前
技术解析|MDM移动设备管理系统无终身买断制度的底层逻辑
人工智能