Sklearn-使用SVC对iris数据集进行分类

Sklearn-使用SVC对iris数据集进行分类

使用SVC对iris数据集进行分类预测

涉及内容包含:

  • 数据集的加载,训练集和测试集的划分
  • 训练svc模型,对测试集的预测
  • 输出混淆矩阵和分类报告
  • 使用Pipeline执行操作

iris数据集的加载

加载数据集

用DataFrame展示数据

划分训练集和测试集合

python 复制代码
from sklearn.datasets import load_iris
python 复制代码
iris = load_iris()
python 复制代码
iris.keys()
复制代码
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
python 复制代码
data = iris['data']
target = iris['target']

# 以DataFrame显示所有的数据
import pandas as pd
df = pd.DataFrame(data,columns=iris['feature_names']) 
df['target'] = target # 添加target列

| | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | target |
| 0 | 5.1 | 3.5 | 1.4 | 0.2 | 0 |
| 1 | 4.9 | 3.0 | 1.4 | 0.2 | 0 |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 | 0 |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 | 0 |
| 4 | 5.0 | 3.6 | 1.4 | 0.2 | 0 |
| ... | ... | ... | ... | ... | ... |
| 145 | 6.7 | 3.0 | 5.2 | 2.3 | 2 |
| 146 | 6.3 | 2.5 | 5.0 | 1.9 | 2 |
| 147 | 6.5 | 3.0 | 5.2 | 2.0 | 2 |
| 148 | 6.2 | 3.4 | 5.4 | 2.3 | 2 |

149 5.9 3.0 5.1 1.8 2

150 rows × 5 columns

python 复制代码
# 划分数据集:训练集和测试集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.3) # 测试集占30%。训练集70%

训练svc模型

  • 导入库文件
  • 初始化svc
  • 训练svc
python 复制代码
from sklearn.svm import SVC
# 初始化SVC
svc = SVC()
# 训练
svc.fit(x_train,y_train)
# 查看训练效果
print("训练集的精度",svc.score(x_train,y_train))
# 对测试集预测的精度
print("对测试集的预测效果:",svc.score(x_test,y_test))

# 对测试集进行预测
y_pre = svc.predict(x_test)
# 表格对比预测与实际结果
df2 = pd.DataFrame(data = {
    'predict':y_pre,
    'true':y_test
})
复制代码
训练集的精度 0.9714285714285714
对测试集的预测效果: 0.9555555555555556

输出混淆矩阵和分类报告

  • 输出混淆矩阵:查看每个类预测的成功与失败的情况
  • 输出分类报告:查看分类的性能
python 复制代码
from sklearn.metrics import confusion_matrix

# 输出混淆矩阵
con_matrix = confusion_matrix(y_test,y_pre)
print(con_matrix)
复制代码
[[12  0  0]
 [ 0 15  1]
 [ 0  1 16]]
python 复制代码
from sklearn.metrics import classification_report
# 输出分类报告
report = classification_report(y_test,y_pre,
                            target_names=iris['target_names'])
print(report)
复制代码
              precision    recall  f1-score   support

      setosa       1.00      1.00      1.00        12
  versicolor       0.94      0.94      0.94        16
   virginica       0.94      0.94      0.94        17

    accuracy                           0.96        45
   macro avg       0.96      0.96      0.96        45
weighted avg       0.96      0.96      0.96        45

相关推荐
leafff1233 小时前
新手入坑 Stable Diffusion:模型、LoRA、硬件一篇讲透
人工智能·计算机视觉·stable diffusion
Liudef064 小时前
DeepseekV3.2 实现构建简易版Wiki系统:从零开始的HTML实现
前端·javascript·人工智能·html
格林威6 小时前
AOI在产品质量检测制造领域的应用
人工智能·数码相机·计算机网络·计算机视觉·目标跟踪·视觉检测·制造
短视频矩阵源码定制6 小时前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
彩云回6 小时前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
Rock_yzh7 小时前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer
rengang667 小时前
Spring AI Alibaba 框架使用示例总体介绍
java·人工智能·spring·spring ai·ai应用编程
FreeBuf_7 小时前
新型Agent感知伪装技术利用OpenAI ChatGPT Atlas浏览器传播虚假内容
人工智能·chatgpt
yuluo_YX7 小时前
语义模型 - 从 Transformer 到 Qwen
人工智能·深度学习·transformer
TMT星球8 小时前
金山办公披露三季报:营收利润双增,WPS 365成业务增长新引擎
人工智能·wps