Python批量将Excel内指定列的数据向上移动一行

本文介绍基于Python 语言,针对一个文件夹 下大量的Excel 表格文件,对其中的每一个文件 加以操作------将其中指定的若干列 的数据部分都向上移动一行,并将所有操作完毕的Excel 表格文件中的数据加以合并,生成一个新的Excel文件的方法。

首先,我们明确一下本文的需求。在一个文件夹内,有大量的Excel 表格文件(以.csv格式文件为例),其中每一个文件都有着类似如下图所示的数据特征;我们希望,对于下图中紫色框内的列,其中的数据部分 (每一列都有一个列名 ,这个列名不算做数据部分 )都向上提升一行(比如原本数据部分的第2行变到第1行,原本第3行变到第2行,以此类推)。

由上图也可以看到,需要加以数据操作的列 ,有的在原本数据部分的第1行就没有数据,而有的在原本的数据部分中第1行也有数据;对于后者,我们在数据向上提升一行之后,相当于原本第1行的数据就被覆盖掉了。此外,很显然在每一个文件的操作结束后,加以处理的列 的数据部分的最后一行 肯定是没有数据的;因此在合并全部操作后的文件之前,还希望将每一个操作后文件最后一行删除。

知道了需求,我们就可以开始代码的撰写;具体代码如下。

python 复制代码
# -*- coding: utf-8 -*-
"""
Created on Fri May 19 01:47:06 2023

@author: fkxxgis
"""

import os
import pandas as pd

original_path = "E:/01_Reflectivity/25_2022Data_New"
result_path = "E:/01_Reflectivity/26_Train_Model_New"

result_df = pd.DataFrame()

for file in os.listdir(original_path):
    if file.endswith(".csv"):
        
        df = pd.read_csv(os.path.join(original_path, file))
        columns_move_index = list(range(8, 16)) + list(range(17, 36))
        for columns_index in columns_move_index:
            for i in range(len(df) - 1):
                df.iat[i, columns_index] = df.iat[i + 1, columns_index]
        if len(df):
            df = df.drop(len(df) - 1)
        # df = df.iloc[ : , 1 : ]
        result_df = pd.concat([result_df, df])
        
result_df.to_csv(os.path.join(result_path, "Train_Model_0715_Main.csv"), index = False)

其中,original_path表示存放有多个待处理的Excel 表格文件的文件夹路径,result_path则是结果Excel表格文件的存放路径。

首先,我们通过result_df = pd.DataFrame()创建一个空的DataFrame ,用于保存处理后的数据。接下来,遍历原始文件夹中的所有文件,并找到文件夹内以.csv结尾的文件;随后,读取这些.csv文件,并将其保存到df中。

其次,我们通过columns_move_index = list(range(8, 16)) + list(range(17, 36))指定需要移动数据的列的索引范围,并随后遍历需要移动数据的列。接下来的df.iat[i, columns_index] = df.iat[i + 1, columns_index]表示将当前行的数据替换为下一行对应的数据。

接下来,我们通过if len(df):判断是否DataFrame 不为空,如果是的话就删除DataFrame 中的最后一行数据;随后,将处理后的DataFrame 连接到result_df中。

最后,我们通过result_df.to_csv()函数,将最终处理后的DataFrame 保存为一个新的Excel表格文件,从而完成我们的需求。

至此,大功告成。

欢迎关注:疯狂学习GIS

相关推荐
工业互联网专业4 分钟前
Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
vue.js·hadoop·python·flask·毕业设计·源码·课程设计
钱钱钱端11 分钟前
【压力测试】如何确定系统最大并发用户数?
自动化测试·软件测试·python·职场和发展·压力测试·postman
慕卿扬12 分钟前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
Json____18 分钟前
python的安装环境Miniconda(Conda 命令管理依赖配置)
开发语言·python·conda·miniconda
小袁在上班1 小时前
Python 单元测试中的 Mocking 与 Stubbing:提高测试效率的关键技术
python·单元测试·log4j
白狐欧莱雅1 小时前
使用python中的pygame简单实现飞机大战游戏
经验分享·python·游戏·pygame
阿_旭1 小时前
基于YOLO11/v10/v8/v5深度学习的维修工具检测识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·qt·ai
阿_旭1 小时前
基于YOLO11/v10/v8/v5深度学习的煤矿传送带异物检测系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·目标检测·yolo11
测试19981 小时前
外包干了2年,快要废了。。。
自动化测试·软件测试·python·面试·职场和发展·单元测试·压力测试
豆本-豆豆奶2 小时前
用 Python 写了一个天天酷跑(附源码)
开发语言·python·游戏·pygame·零基础教程