2023电赛E题视觉部分

该部分主要要完成正方形区域的识别,并返回对应的坐标,但是由于距离1m,过远。因此需要引入图像增强,下面代码完成基本流程测试,仅供参考:

import sensor

import image

import time

初始化摄像头

sensor.reset()

sensor.set_pixformat(sensor.RGB565)

sensor.set_framesize(sensor.QVGA)

sensor.skip_frames(time = 2000)

设置阈值,用于图像增强

thresholds = [(30, 100, -64, -8, -32, 32)] # 根据实际情况调整阈值

while True:

img = sensor.snapshot() # 获取图像

图像增强

img.binary([thresholds])

寻找轮廓

blobs = img.find_blobs([thresholds], pixels_threshold=200, area_threshold=200)

遍历找到的轮廓

for blob in blobs:

判断是否为正方形

if blob.is_square():

计算正方形的中心坐标

x = blob.cx()

y = blob.cy()

计算距离

distance = 1 / blob.w() # 假设正方形的宽度为1米

在图像上绘制正方形和坐标

img.draw_rectangle(blob.rect())

img.draw_cross(x, y)

打印坐标和距离

print("Square found at (x={}, y={}), distance={}m".format(x, y, distance))

显示图像

img.show()

相关推荐
jndingxin2 小时前
OpenCV视觉分析之目标跟踪(8)目标跟踪函数CamShift()使用
人工智能·opencv·目标跟踪
handsomeboysk21 小时前
mAP的定义
人工智能·计算机视觉·目标跟踪
jndingxin1 天前
OpenCV视觉分析之目标跟踪(11)计算两个图像之间的最佳变换矩阵函数findTransformECC的使用
opencv·目标跟踪·矩阵
富士达幸运星2 天前
YOLOv4的网络架构解析
人工智能·yolo·目标跟踪
a48224253 天前
【零售和消费品&厨房】厨房电器检测系统源码&数据集全套:改进yolo11-rmt
人工智能·目标跟踪·零售
牧子川5 天前
【论文解读】EdgeYOLO:一种边缘实时目标检测器(附论文地址)
目标跟踪·论文解读·边缘设备·edgeyolo
选与握5 天前
路测毫米波雷达标定和目标跟踪
人工智能·计算机视觉·目标跟踪
bryant_meng6 天前
【python】OpenCV—Tracking(10.4)—Centroid
python·opencv·目标跟踪·人脸检测·质心跟踪
lqqjuly7 天前
目标跟踪算法-卡尔曼滤波详解
人工智能·算法·目标跟踪
思通数科大数据舆情7 天前
智能医疗文档处理:开源OCR系统解析
大数据·人工智能·目标检测·机器学习·计算机视觉·目标跟踪·ocr