【CV 目标检测】Fast RCNN模型①——与R-CNN区别

3.Fast RCNN模型

相比于R-CNN,Fast RCNN模型主要在以下三个方面进行了改进:

  1. 提高训练和预测速度
    R-CNN首先从测试图中提取2000个候选区域,然后将这2000个候选区域分别输入到预训练好的CNN中提取特征。由于候选区域有大量的重叠,这种提取特征的方法,就会重复的计算重叠区域的特征。在Fast-RCNN中,将整张图输入到CNN中提取特征 ,将候选区域映射到特征图上,这样就避免了对图像区域进行重复处理,提高效率减少时间。
  2. 不需要额外的空间保存CNN网络提取的特征向量
    RCNN中需要将提取到的特征保存下来,用于为每个类训练单独的SVM分类器和边框回归器。在Fast-RCNN中,将类别判断和边框回归统一使用CNN实现,不需要额外的空间存储特征。
  3. 不再直接对候选区域进行缩放
    RCNN中需要将候选区域进行缩放送入CNN中进行特征提取,在Fast-RCNN中使用ROIpooling的方法进行尺寸的调整。
相关推荐
学习路上_write10 小时前
神经网络初次学习收获
人工智能·python
zstar-_10 小时前
DeepSeek-OCR可能成为开启新时代的钥匙
人工智能·ocr
墨利昂10 小时前
自然语言处理NLP的数据预处理:从原始文本到模型输入(MindSpore版)
人工智能·自然语言处理
wb0430720110 小时前
如何开发一个 IDEA 插件通过 Ollama 调用大模型为方法生成仙侠风格的注释
人工智能·语言模型·kotlin·intellij-idea
apocalypsx10 小时前
深度学习-卷积神经网络基础
人工智能·深度学习·cnn
Aevget10 小时前
界面控件DevExpress WPF v25.2新功能预览 - 聚焦AI功能提升
人工智能·wpf·界面控件·devexpress·ui开发·.net 10
F_D_Z10 小时前
扩散模型对齐:DMPO 让模型更懂人类偏好
人工智能·扩散模型·kl散度·双阶段训练·散度最小化偏好优化
ezl1fe10 小时前
第一篇:把任意 HTTP API 一键变成 Agent 工具
人工智能·后端·算法
算家计算10 小时前
OpenAI推出首款浏览器,能否撼动全球超30亿用户的Chrome?
人工智能·openai·资讯
文火冰糖的硅基工坊10 小时前
[人工智能-大模型-33]:模型层技术 - 大模型的神经网络架构
人工智能·神经网络·架构