【CV 目标检测】Fast RCNN模型①——与R-CNN区别

3.Fast RCNN模型

相比于R-CNN,Fast RCNN模型主要在以下三个方面进行了改进:

  1. 提高训练和预测速度
    R-CNN首先从测试图中提取2000个候选区域,然后将这2000个候选区域分别输入到预训练好的CNN中提取特征。由于候选区域有大量的重叠,这种提取特征的方法,就会重复的计算重叠区域的特征。在Fast-RCNN中,将整张图输入到CNN中提取特征 ,将候选区域映射到特征图上,这样就避免了对图像区域进行重复处理,提高效率减少时间。
  2. 不需要额外的空间保存CNN网络提取的特征向量
    RCNN中需要将提取到的特征保存下来,用于为每个类训练单独的SVM分类器和边框回归器。在Fast-RCNN中,将类别判断和边框回归统一使用CNN实现,不需要额外的空间存储特征。
  3. 不再直接对候选区域进行缩放
    RCNN中需要将候选区域进行缩放送入CNN中进行特征提取,在Fast-RCNN中使用ROIpooling的方法进行尺寸的调整。
相关推荐
飞哥数智坊19 分钟前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek
CareyWYR25 分钟前
AI:比我更懂我的旁观者
人工智能
搞科研的小刘选手1 小时前
【高录用|快检索】第二届图像处理、多媒体技术与机器学习国际学术会议(IPMML 2025)
人工智能·机器学习·多媒体·学术会议
秋邱1 小时前
AI + 社区服务:智慧老年康养助手(轻量化落地方案)
人工智能·python·重构·ar·推荐算法·agi
leijiwen1 小时前
Bsin X BDCM:从流量驱动到价值激励驱动的智能增长引擎
大数据·人工智能·web3
人工智能训练1 小时前
Linux 系统核心快捷键表(可打印版)
linux·运维·服务器·人工智能·ubuntu·容器·openeuler
得贤招聘官1 小时前
AI 重构招聘:从效率到精准决策
人工智能·重构
高锰酸钾_2 小时前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
人邮异步社区2 小时前
想要系统地学习扩散模型,应该怎么去做?
人工智能·学习·程序员·扩散模型
1***y1782 小时前
区块链跨链桥、 跨链桥到底在解决什么问题?
大数据·人工智能·区块链