【CV 目标检测】Fast RCNN模型①——与R-CNN区别

3.Fast RCNN模型

相比于R-CNN,Fast RCNN模型主要在以下三个方面进行了改进:

  1. 提高训练和预测速度
    R-CNN首先从测试图中提取2000个候选区域,然后将这2000个候选区域分别输入到预训练好的CNN中提取特征。由于候选区域有大量的重叠,这种提取特征的方法,就会重复的计算重叠区域的特征。在Fast-RCNN中,将整张图输入到CNN中提取特征 ,将候选区域映射到特征图上,这样就避免了对图像区域进行重复处理,提高效率减少时间。
  2. 不需要额外的空间保存CNN网络提取的特征向量
    RCNN中需要将提取到的特征保存下来,用于为每个类训练单独的SVM分类器和边框回归器。在Fast-RCNN中,将类别判断和边框回归统一使用CNN实现,不需要额外的空间存储特征。
  3. 不再直接对候选区域进行缩放
    RCNN中需要将候选区域进行缩放送入CNN中进行特征提取,在Fast-RCNN中使用ROIpooling的方法进行尺寸的调整。
相关推荐
春末的南方城市1 天前
AI视频生成进入多镜头叙事时代!字节发布 Waver 1.:一句话生成 10 秒 1080p 多风格视频,创作轻松“一键”达!
人工智能·深度学习·机器学习·计算机视觉·aigc
机器之心1 天前
节前重磅:开源旗舰模型新SOTA,智谱GLM-4.6问世
人工智能·openai
肖书婷1 天前
人工智能-机器学习day2
人工智能·机器学习
西猫雷婶1 天前
pytorch基本运算-torch.normal()函数生成的随机数据添加噪声
人工智能·pytorch·python·深度学习·学习·线性代数·机器学习
He BianGu1 天前
【项目】Vision Master OpenCV 3.0 版本(预)发行说明
人工智能·数码相机·opencv
无锡布里渊1 天前
分布式光纤声波振动与AI的深度融合:开启智慧感知新时代
人工智能·温度监测·线性感温火灾监测·线型感温火灾探测器·光纤振动das·防外破·分布式光纤声波振动
阿里云云原生1 天前
Qoder 负责人揭秘:Qoder 产品背后的思考与未来发展
人工智能
岁月宁静1 天前
Vue3.5 + SSE 构建高可用 AI 聊天交互层 ——chat.js 模块架构与实现
前端·vue.js·人工智能
l12345sy1 天前
Day31_【 NLP _1.文本预处理 _(3)文本数据分析】
人工智能·自然语言处理·数据分析
精灵vector1 天前
构建自定义AI客户支持助手——LangGraph 中断机制
人工智能·python