ChatGPT + Stable Diffusion + 百度AI + MoviePy 实现文字生成视频,小说转视频,自媒体神器!(二)

ChatGPT + Stable Diffusion + 百度AI + MoviePy 实现文字生成视频,小说转视频,自媒体神器!(二)

前言

最近大模型频出,但是对于我们普通人来说,如何使用这些AI工具来辅助我们的工作呢,或者参与进入我们的生活,就着现在比较热门的几个AI,写个一个提高生产力工具,现在在逻辑上已经走通了,后面会针对web页面、后台进行优化。

github链接
B站教程视频 https://www.bilibili.com/video/BV18M4y1H7XN/


第三步、调用百度语音合成包进行语音合成

这里不是智能用百度的API合成,想谷歌的,阿里云的都可以,只是我比较熟悉百度的API ps~: 关键是免费😂

python 复制代码
class Main:
    client_id = client_id
    client_secret = client_secret

    def create_access_token(self):
        url = f"https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={self.client_id}&client_secret={self.client_secret}"
        payload = ""
        headers = {
            'Content-Type': 'application/json',
            'Accept': 'application/json'
        }
        response = requests.request("POST", url, headers=headers, data=payload)
        print("-----------向百度获取 access_token API 发起请求了-----------")
        access_token = response.json()
        access_token.update({"time": datetime.now().strftime("%Y-%m-%d")})
        with open('access_token.json', 'w') as f:
            json.dump(access_token, f)
        return access_token

    def get_access_token(self):
        if os.path.exists('access_token.json'):
            with open('access_token.json', 'r') as f:
                data = json.load(f)
            time = data.get("time")
            if time and (datetime.now() - datetime.strptime(time, '%Y-%m-%d')).days >= 29:
                return self.create_access_token()
            return data
        return self.create_access_token()

    def text_to_audio(self, text: str, index: int):
        url = "https://tsn.baidu.com/text2audio"
        text = text.encode('utf8')
        FORMATS = {3: "mp3", 4: "pcm", 5: "pcm", 6: "wav"}
        FORMAT = FORMATS[6]
        data = {
            # 合成的文本,文本长度必须小于1024GBK字节。建议每次请求文本不超过120字节,约为60个汉字或者字母数字。
            "tex": text,
            # access_token
            "tok": self.get_access_token().get("access_token"),
            # 用户唯一标识,用来计算UV值。建议填写能区分用户的机器 MAC 地址或 IMEI 码,长度为60字符以内
            "cuid": hex(uuid.getnode()),
            # 客户端类型选择,web端填写固定值1
            "ctp": "1",
            # 固定值zh。语言选择,目前只有中英文混合模式,填写固定值zh
            "lan": "zh",
            # 语速,取值0-15,默认为5中语速
            "spd": 5,
            # 音调,取值0-15,默认为5中语调
            "pit": 5,
            # 音量,基础音库取值0-9,精品音库取值0-15,默认为5中音量(取值为0时为音量最小值,并非为无声)
            "vol": 5,
            # (基础音库) 度小宇=1,度小美=0,度逍遥(基础)=3,度丫丫=4
            # (精品音库) 度逍遥(精品)=5003,度小鹿=5118,度博文=106,度小童=110,度小萌=111,度米朵=103,度小娇=5
            "per": 5003,
            # 3为mp3格式(默认); 4为pcm-16k;5为pcm-8k;6为wav(内容同pcm-16k); 注意aue=4或者6是语音识别要求的格式,但是音频内容不是语音识别要求的自然人发音,所以识别效果会受影响。
            "aue": FORMAT
        }
        data = urllib.parse.urlencode(data)
        response = requests.post(url, data)
        if response.status_code == 200:
            result_str = response.content
            save_file = str(index) + '.' + FORMAT
            audio = file_path + "audio"
            if not os.path.isdir(audio):
                os.mkdir(audio)
            audio_path = f'{audio}/' + save_file
            with open(audio_path, 'wb') as of:
                of.write(result_str)
            return audio_path
        else:
            return False

当然了,这个设计也是热拔插的,以后这些数据都会做成动态的,在页面用户可以调整,也可以选择其他的API服务商

第四步、调用百度语音合成包进行语音合成

这里就比较麻烦了,首先要搭建起 Stable Diffusion 的环境,Window 用户我记得有一个 绘世

的软件,一键就可以安装,mac用户要去官网下载。

python 复制代码
class Main:
    sd_url = sd_url

    def draw_picture(self, obj_list):
        """
        :param obj_list:
        :return: 图片地址列表
        """
        picture_path_list = []
        for index, obj in enumerate(obj_list):
            novel_dict = {
                "enable_hr": "false",
                "denoising_strength": 0,
                "firstphase_width": 0,
                "firstphase_height": 0,
                "hr_scale": 2,
                "hr_upscaler": "string",
                "hr_second_pass_steps": 0,
                "hr_resize_x": 0,
                "hr_resize_y": 0,
                "prompt": "{}".format(obj["prompt"]),
                "styles": [
                    "string"
                ],
                "seed": -1,
                "subseed": -1,
                "subseed_strength": 0,
                "seed_resize_from_h": -1,
                "seed_resize_from_w": -1,
                "sampler_name": "DPM++ SDE Karras",
                "batch_size": 1,
                "n_iter": 1,
                "steps": 50,
                "cfg_scale": 7,
                "width": 1024,
                "height": 768,
                "restore_faces": "false",
                "tiling": "false",
                "do_not_save_samples": "false",
                "do_not_save_grid": "false",
                "negative_prompt": obj["negative"],
                "eta": 0,
                "s_churn": 0,
                "s_tmax": 0,
                "s_tmin": 0,
                "s_noise": 1,
                "override_settings": {},
                "override_settings_restore_afterwards": "true",
                "script_args": [],
                "sampler_index": "DPM++ SDE Karras",
                "script_name": "",
                "send_images": "true",
                "save_images": "true",
                "alwayson_scripts": {}
            }
            html = requests.post(self.sd_url, data=json.dumps(novel_dict))
            img_response = json.loads(html.text)
            image_bytes = base64.b64decode(img_response['images'][0])
            image = Image.open(io.BytesIO(image_bytes))
            # 图片存放
            new_path = file_path + 'picture'
            if not os.path.exists(new_path):
                os.makedirs(new_path)
            picture_name = str(obj['index']) + ".png"
            image_path = os.path.join(new_path, picture_name)
            image.save(image_path)
            picture_path_list.append(image_path)
            print(f"-----------生成第{index}张图片-----------")
        return picture_path_list

后期我看看能不能引入 Midjuorney 的服务商,或者他们官方的API ps ~ 做人没有梦想和咸鱼有什么区别🥳

第五步、使用moviepy将图片和语音结合起来生成视频

moviepy中文文档

python 复制代码
import os
from moviepy.editor import ImageSequenceClip, AudioFileClip, concatenate_videoclips
import numpy as np

from config import file_path


class Main:
    def merge_video(self, picture_path_list: list, audio_path_list: list, name: str):
        """
        :param picture_path_list: 图片路径列表
        :param audio_path_list: 音频路径列表
        :return:
        """
        clips = []
        for index, value in enumerate(picture_path_list):

            audio_clip = AudioFileClip(audio_path_list[index])
            img_clip = ImageSequenceClip([picture_path_list[index]], audio_clip.duration)
            img_clip = img_clip.set_position(('center', 'center')).fl(self.fl_up, apply_to=['mask']).set_duration(
                audio_clip.duration)
            clip = img_clip.set_audio(audio_clip)
            clips.append(clip)
            print(f"-----------生成第{index}段视频-----------")
        print(f"-----------开始合成视频-----------")
        final_clip = concatenate_videoclips(clips)
        new_parent = file_path + "video/"
        if not os.path.exists(new_parent):
            os.makedirs(new_parent)
        final_clip.write_videofile(new_parent + name + ".mp4", fps=24, audio_codec="aac")

    def fl_up(self, gf, t):
        # 获取原始图像帧
        frame = gf(t)

        # 进行滚动效果,将图像向下滚动50像素
        height, width = frame.shape[:2]
        scroll_y = int(t * 10)  # 根据时间t计算滚动的像素数
        new_frame = np.zeros_like(frame)

        # 控制滚动的范围,避免滚动超出图像的边界
        if scroll_y < height:
            new_frame[:height - scroll_y, :] = frame[scroll_y:, :]

        return new_frame

暂时就先写到这里了,后期努力添砖加瓦。 代码已经开源了。链接 有什么问题可以在github上或者博客介绍里来问我,byebye~👋

相关推荐
狸克先生4 小时前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互
大力财经5 小时前
百度Q3财报:净利润增长17%超预期 文心大模型日调用量增30倍达15亿
百度
请叫我雷轰5 小时前
百度主动推送可以提升抓取,它能提升索引量吗?
百度·dubbo
陪学5 小时前
百度遭初创企业指控抄袭,维权还是碰瓷?
人工智能·百度·面试·职场和发展·产品运营
qdprobot6 小时前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
新加坡内哥谈技术7 小时前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
nbsaas-boot9 小时前
如何利用ChatGPT加速开发与学习:以BPMN编辑器为例
学习·chatgpt·编辑器
hunteritself1 天前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
Doker 多克1 天前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
北京鹏生科技有限公司1 天前
EcoVadis审核是什么?EcoVadis审核流程包括什么?
大数据·百度