泰坦尼克号生存者数据的预测

泰坦尼克号生存者数据的预测练习

使用决策回归树建立模型
代码中有三次关于模型的生成,意在不断优化参数来提高预测值

第三次模型的建立使用网格搜索对超参数进行最优值选取,时间会较长,且效果不一定有第二次模型建立的好,仅供参考。

数据集

链接:百度网盘 请输入提取码

提取码:6223

python 复制代码
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.model_selection import train_test_split
import numpy as np

data = pd.read_csv("./data/mytrain.csv")
#print(data)
# 查看表头
print(data.info())
# 显示前5行数据 查看表的结构
#print(data.head(5))
print(data.head())

# 筛选特征 inplace=True表示将修改后的表覆盖原表,默认false不覆盖
# axis=1删除列
# data.drop(['Cabin','Name','Ticket'], inplace=True, axis=1)
# 同下
data = data.drop(['Cabin','Name','Ticket', 'Unnamed: 12'], inplace=False, axis=1)
# print(data2)

# data2.to_csv("./data/train.csv", header=True)

# 处理缺省值 用平均去填补
data['Age'] = data['Age'].fillna(data['Age'].mean())

# 删除有缺省值的行,括号默认为1
data = data.dropna()
# data = data.dropna(1)

# 转换多分类
labels = data["Embarked"].unique().tolist()
data["Embarked"] = data['Embarked'].apply(lambda x: labels.index(x))
print("-------------")
print(data['Embarked'])
print("-------------")
# 转换二分类
data['Sex'] = (data['Sex'] == 'male').astype("int")
# data.loc[:,'Sex'] = (data['Sex'] == 'male').astype("int")
# data.iloc[:,3]
print(data.iloc[:, 3])
print(data.head())

x = data.iloc[:, data.columns != 'Survived']
print(data.columns != 'Survived')
y = data.iloc[:, data.columns == 'Survived']
# print(y)

Xtrain, Xtest, Ytrain, Ytest = train_test_split(x, y, test_size=0.3)
# print(Xtrain)

# 将乱序的索引表恢复
# 纠正索引避免混乱
# Xtrain.index = range(Xtrain.shape[0])
# print(Xtrain)
for i in [Xtrain, Xtest, Ytrain, Ytest]:
    i.index = range(i.shape[0])

# 建立模型1
# clf = DecisionTreeClassifier(random_state=25)
# clf = clf.fit(Xtrain, Ytrain)
# score = clf.score(Xtest, Ytest)
# print(score)  # 0.749
#
# # 使用交叉验证
# score = cross_val_score(clf, x, y, cv=10).mean()
# print(score)  # 0.746

# 建立模型2
# 上面模型不好,需要调参
# tr = []
# te = []
# for i in range(10):
#     clf = DecisionTreeClassifier(random_state=25
#                                  , max_depth=i+1
#                                  , criterion='entropy'
#                                  )
#     clf = clf.fit(Xtrain, Ytrain)
#     score_tr = clf.score(Xtrain, Ytrain)
#     score_te = cross_val_score(clf, x, y, cv=10).mean()
#     tr.append(score_tr)
#     te.append(score_te)
# print(max(te))  # 0.8166624106230849
# plt.plot(range(1, 11), tr, color='red', label='train')
# plt.plot(range(1, 11), te, color='blue', label='test')
# plt.xticks(range(1, 11))
# plt.legend()
# plt.show()

# 建立模型3
# 使用网格搜索调整多个超参数,枚举技术,计算量大

# 导入有顺序的随机50个0到0.5的数字
gini_thresholds = np.linspace(0, 0.5, 50)
# entropy_thresholds = np.linspace(0, 1, 50)
# print(x)
# arange导入的不是随机的,按照步长的大小设定
# np.arange(0, 0.5, 0.01)

# 希望的网格搜索的参数和参数的取值范围
parameters = {"criterion":("gini", "entropy")
              , "splitter":("best", "random")
              , "max_depth":[*range(1, 10)]
              , "min_samples_leaf":[*range(1, 50, 5)]
              , "min_impurity_decrease":[*np.linspace(0, 0.5, 20)]
              }
clf = DecisionTreeClassifier(random_state=25)
GS = GridSearchCV(clf, parameters, cv=10)
GS = GS.fit(Xtrain, Ytrain)
print(GS.best_params_)
print(GS.best_score_)
# {'criterion': 'entropy', 'max_depth': 6, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'splitter': 'random'}
# 0.839452124935996
相关推荐
金井PRATHAMA14 分钟前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong011719 分钟前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
sonrisa_33 分钟前
collections模块
python
老兵发新帖34 分钟前
LlamaFactory能做哪些?
人工智能
2202_7567496935 分钟前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
折翼的恶魔37 分钟前
数据分析:排序
python·数据分析·pandas
人有一心41 分钟前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习
机器之心43 分钟前
用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
人工智能·openai
天雪浪子1 小时前
Python入门教程之赋值运算符
开发语言·python