垃圾收集器浅析 主
JVM参数
3.1.1 标准参数
-version
-help
-server
-cp
3.1.2 -X参数
非标准参数,也就是在JDK各个版本中可能会变动
-Xint 解释执行
-Xcomp 第一次使用就编译成本地代码
-Xmixed 混合模式,JVM自己来决定
3.1.3 -XX参数
使用得最多的参数类型
非标准化参数,相对不稳定,主要用于JVM调优和Debug
a.Boolean类型
格式:-XX:[+-]<name> +或-表示启用或者禁用name属性
比如:-XX:+UseConcMarkSweepGC 表示启用CMS类型的垃圾回收器
-XX:+UseG1GC 表示启用G1类型的垃圾回收器
b.非Boolean类型
格式:-XX<name>=<value>表示name属性的值是value
比如:-XX:MaxGCPauseMillis=500
3.1.4 其他参数
-Xms1000M等价于-XX:InitialHeapSize=1000M
-Xmx1000M等价于-XX:MaxHeapSize=1000M
-Xss100等价于-XX:ThreadStackSize=100
所以这块也相当于是-XX类型的参数
3.1.5 查看参数
java -XX:+PrintFlagsFinal -version > flags.txt
]
值得注意的是"="表示默认值,":="表示被用户或JVM修改后的值
要想查看某个进程具体参数的值,可以使用jinfo,这块后面聊
一般要设置参数,可以先查看一下当前参数是什么,然后进行修改
3.1.6 设置参数的常见方式
- 开发工具中设置比如IDEA,eclipse
- 运行jar包的时候:java -XX:+UseG1GC xxx.jar
- web容器比如tomcat,可以在脚本中的进行设置
- 通过jinfo实时调整某个java进程的参数(参数只有被标记为manageable的flags可以被实时修改)
3.1.7 实践和单位换算
1Byte(字节)=8bit(位)
1KB=1024Byte(字节)
1MB=1024KB
1GB=1024MB
1TB=1024GB
(1)设置堆内存大小和参数打印
-Xmx100M -Xms100M -XX:+PrintFlagsFinal
(2)查询+PrintFlagsFinal的值
:=true
(3)查询堆内存大小MaxHeapSize
:= 104857600
(4)换算
104857600(Byte)/1024=102400(KB)
102400(KB)/1024=100(MB)
(5)结论
104857600是字节单位
3.1.8 常用参数含义
参数 | 含义 | 说明 |
---|---|---|
-XX:CICompilerCount=3 | 最大并行编译数 | 如果设置大于1,虽然编译速度会提高,但是同样影响系统稳定性,会增加JVM崩溃的可能 |
-XX:InitialHeapSize=100M | 初始化堆大小 | 简写-Xms100M |
-XX:MaxHeapSize=100M | 最大堆大小 | 简写-Xms100M |
-XX:NewSize=20M | 设置年轻代的大小 | |
-XX:MaxNewSize=50M | 年轻代最大大小 | |
-XX:OldSize=50M | 设置老年代大小 | |
-XX:MetaspaceSize=50M | 设置方法区大小 | |
-XX:MaxMetaspaceSize=50M | 方法区最大大小 | |
-XX:+UseParallelGC | 使用UseParallelGC | 新生代,吞吐量优先 |
-XX:+UseParallelOldGC | 使用UseParallelOldGC | 老年代,吞吐量优先 |
-XX:+UseConcMarkSweepGC | 使用CMS | 老年代,停顿时间优先 |
-XX:+UseG1GC | 使用G1GC | 新生代,老年代,停顿时间优先 |
-XX:NewRatio | 新老生代的比值 | 比如-XX:Ratio=4,则表示新生代:老年代=1:4,也就是新生代占整个堆内存的1/5 |
-XX:SurvivorRatio | 两个S区和Eden区的比值 | 比如-XX:SurvivorRatio=8,也就是(S0+S1):Eden=2:8,也就是一个S占整个新生代的1/10 |
-XX:+HeapDumpOnOutOfMemoryError | 启动堆内存溢出打印 | 当JVM堆内存发生溢出时,也就是OOM,自动生成dump文件 |
-XX:HeapDumpPath=heap.hprof | 指定堆内存溢出打印目录 | 表示在当前目录生成一个heap.hprof文件 |
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Xloggc:g1-gc.log | 打印出GC日志 | 可以使用不同的垃圾收集器,对比查看GC情况 |
-Xss128k | 设置每个线程的堆栈大小 | 经验值是3000-5000最佳 |
-XX:MaxTenuringThreshold=6 | 提升年老代的最大临界值 | 默认值为 15 |
-XX:InitiatingHeapOccupancyPercent | 启动并发GC周期时堆内存使用占比 | G1之类的垃圾收集器用它来触发并发GC周期,基于整个堆的使用率,而不只是某一代内存的使用比. 值为 0 则表示"一直执行GC循环". 默认值为 45. |
-XX:G1HeapWastePercent | 允许的浪费堆空间的占比 | 默认是10%,如果并发标记可回收的空间小于10%,则不会触发MixedGC。 |
-XX:MaxGCPauseMillis=200ms | G1最大停顿时间 | 暂停时间不能太小,太小的话就会导致出现G1跟不上垃圾产生的速度。最终退化成Full GC。所以对这个参数的调优是一个持续的过程,逐步调整到最佳状态。 |
-XX:ConcGCThreads=n | 并发垃圾收集器使用的线程数量 | 默认值随JVM运行的平台不同而不同 |
-XX:G1MixedGCLiveThresholdPercent=65 | 混合垃圾回收周期中要包括的旧区域设置占用率阈值 | 默认占用率为 65% |
-XX:G1MixedGCCountTarget=8 | 设置标记周期完成后,对存活数据上限为 G1MixedGCLIveThresholdPercent 的旧区域执行混合垃圾回收的目标次数 | 默认8次混合垃圾回收,混合回收的目标是要控制在此目标次数以内 |
-XX:G1OldCSetRegionThresholdPercent=1 | 描述Mixed GC时,Old Region被加入到CSet中 | 默认情况下,G1只把10%的Old Region加入到CSet中 |
垃圾收集器
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。
2.5.5.1 Serial
Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK1.3.1之前)是虚拟机新生代收集的唯一选择。
它是一种单线程收集器,不仅仅意味着它只会使用一个CPU或者一条收集线程去完成垃圾收集工作,更重要的是其在进行垃圾收集的时候需要暂停其他线程。
优点:简单高效,拥有很高的单线程收集效率
缺点:收集过程需要暂停所有线程
算法:复制算法
适用范围:新生代
应用:Client模式下的默认新生代收集器
2.5.5.2 Serial Old
Serial Old收集器是Serial收集器的老年代版本,也是一个单线程收集器,不同的是采用"标记-整理算法",运行过程和Serial收集器一样。
2.5.5.3 ParNew
可以把这个收集器理解为Serial收集器的多线程版本。
优点:在多CPU时,比Serial效率高。
缺点:收集过程暂停所有应用程序线程,单CPU时比Serial效率差。
算法:复制算法
适用范围:新生代
应用:运行在Server模式下的虚拟机中首选的新生代收集器
2.5.5.4 Parallel Scavenge
Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器,看上去和ParNew一样,但是Parallel Scanvenge更关注系统的吞吐量。
吞吐量=运行用户代码的时间/(运行用户代码的时间+垃圾收集时间)
比如虚拟机总共运行了100分钟,垃圾收集时间用了1分钟,吞吐量=(100-1)/100=99%。
若吞吐量越大,意味着垃圾收集的时间越短,则用户代码可以充分利用CPU资源,尽快完成程序的运算任务。
-XX:MaxGCPauseMillis控制最大的垃圾收集停顿时间,
-XX:GCRatio直接设置吞吐量的大小。
2.5.5.5 Parallel Old
Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和标记-整理算法 进行垃圾回收,也是更加关注系统的吞吐量。
2.5.4.6 CMS
CMS(Concurrent Mark Sweep)收集器是一种以获取
最短回收停顿时间
为目标的收集器。采用的是"标记-清除算法",整个过程分为4步
(1)初始标记 CMS initial mark 标记GC Roots直接关联对象,不用Tracing,速度很快
(2)并发标记 CMS concurrent mark 进行GC Roots Tracing
(3)重新标记 CMS remark 修改并发标记因用户程序变动的内容
(4)并发清除 CMS concurrent sweep 清除不可达对象回收空间,同时有新垃圾产生,留着下次清理称为浮动垃圾
由于整个过程中,并发标记和并发清除,收集器线程可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行的。
优点:并发收集、低停顿
缺点:产生大量空间碎片、并发阶段会降低吞吐量
2.5.5.7 G1(Garbage-First)
使用G1收集器时,Java堆的内存布局与就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。
每个Region大小都是一样的,可以是1M到32M之间的数值,但是必须保证是2的n次幂
如果对象太大,一个Region放不下[超过Region大小的50%],那么就会直接放到H中
设置Region大小:-XX:G1HeapRegionSize=M
所谓Garbage-Frist,其实就是优先回收垃圾最多的Region区域
(1)分代收集(仍然保留了分代的概念) (2)空间整合(整体上属于"标记-整理"算法,不会导致空间碎片) (3)可预测的停顿(比CMS更先进的地方在于能让使用者明确指定一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒)
工作过程可以分为如下几步
初始标记(Initial Marking) 标记以下GC Roots能够关联的对象,并且修改TAMS的值,需要暂停用户线程
并发标记(Concurrent Marking) 从GC Roots进行可达性分析,找出存活的对象,与用户线程并发执行
最终标记(Final Marking) 修正在并发标记阶段因为用户程序的并发执行导致变动的数据,需暂停用户线程
筛选回收(Live Data Counting and Evacuation) 对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间制定回收计划
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-d0TpyGXY-1690955841044)(images/36.png)]
2.5.5.8 ZGC
JDK11新引入的ZGC收集器,不管是物理上还是逻辑上,ZGC中已经不存在新老年代的概念了
会分为一个个page,当进行GC操作时会对page进行压缩,因此没有碎片问题
只能在64位的linux上使用,目前用得还比较少
(1)可以达到10ms以内的停顿时间要求
(2)支持TB级别的内存
(3)堆内存变大后停顿时间还是在10ms以内
2.5.5.9 垃圾收集器分类
- 串行收集器->Serial和Serial Old
只能有一个垃圾回收线程执行,用户线程暂停。
适用于内存比较小的嵌入式设备
。
- 并行收集器[吞吐量优先]->Parallel Scanvenge、Parallel Old
多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
适用于科学计算、后台处理等若交互场景
。
- 并发收集器[停顿时间优先]->CMS、G1
用户线程和垃圾收集线程同时执行(但并不一定是并行的,可能是交替执行的),垃圾收集线程在执行的时候不会停顿用户线程的运行。
适用于相对时间有要求的场景,比如Web
。
2.5.5.10 常见问题
-
吞吐量和停顿时间
-
停顿时间->垃圾收集器
进行
垃圾回收终端应用执行响应的时间 -
吞吐量->运行用户代码时间/(运行用户代码时间+垃圾收集时间)
停顿时间越短就越适合需要和用户交互的程序,良好的响应速度能提升用户体验;
高吞吐量则可以高效地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
小结
:这两个指标也是评价垃圾回收器好处的标准。 -
-
如何选择合适的垃圾收集器
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref28
- 优先调整堆的大小让服务器自己来选择
- 如果内存小于100M,使用串行收集器
- 如果是单核,并且没有停顿时间要求,使用串行或JVM自己选
- 如果允许停顿时间超过1秒,选择并行或JVM自己选
- 如果响应时间最重要,并且不能超过1秒,使用并发收集器
-
对于G1收集
JDK 7开始使用,JDK 8非常成熟,JDK 9默认的垃圾收集器,适用于新老生代。
是否使用G1收集器?
(1)50%以上的堆被存活对象占用
(2)对象分配和晋升的速度变化非常大
(3)垃圾回收时间比较长
- G1中的RSet
全称Remembered Set,记录维护Region中对象的引用关系
试想,在G1垃圾收集器进行新生代的垃圾收集时,也就是Minor GC,假如该对象被老年代的Region中所引用,这时候新生代的该对象就不能被回收,怎么记录呢?
不妨这样,用一个类似于hash的结构,key记录region的地址,value表示引用该对象的集合,这样就能知道该对象被哪些老年代的对象所引用,从而不能回收。
- 如何开启需要的垃圾收集器
这里JVM参数信息的设置大家先不用关心,后面会学习到。
(1)串行
-XX:+UseSerialGC
-XX:+UseSerialOldGC
(2)并行(吞吐量优先):
-XX:+UseParallelGC
-XX:+UseParallelOldGC
(3)并发收集器(响应时间优先)
-XX:+UseConcMarkSweepGC
-XX:+UseG1GC
并发 垃圾收集线程 与业务线程一起执行的过程 叫并发 但是这个时候 硬件是单核的 并发不并行
并行 多个垃圾收集线程进行执行 STW
吞吐量 停顿时间 垃圾收集器的好坏的
如果停顿时间在可控制范围之内,那么优先考虑吞吐量 如果吞吐量在极限情况下,优先考虑停顿时间
0-0.5S 之上 设置一个0.5S左右的极限吞吐
优先设置最大吞吐 95% 尽可能降低停顿时间 1%的吞吐可以换来30% 98% 1S 97% 0.7S
怎么并发的 是不是完全并发 不能完全并发 减小停顿时间 并不是让停顿时间消失
垃圾收集线程 与业务线程 如何一起运行
该回收的没回收 不该回收的被回收了 产生垃圾 标记清除算法
我需要把耗时的步骤 全部并发 并且 把不耗时的步骤 STW
如果我们希望垃圾收集时间变短 我们应该怎么办 ?
标记 找出所有的GC root 并且找出所有引用链上的存活对象 并且标记
清除
初始标记:找出所有的GC root,标记直接相关联的第一个对象 STW
并发标记:找出所有的引用链上的剩余对象 耗时 并发执行
重新标记:就是将第二步所产生的垃圾进行二次标记 不耗时 STW
并发清理:清理所有垃圾 耗时 并发执行
G1
1.可以让你停顿时间变短 想多短就多短
1个小时 浏览器
2.某种程度上可以解决空间碎片的问题
Azure C4