pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

目录

1.迁移学习概念

2.数据预处理

3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

3.2如果用GPU训练,需要加入以下代码

3.3卷积层冻结模块

3.4加载resnet152模

3.5解释initialize_model函数

3.6迁移学习网络搭建

3.7优化器

3.8训练模块(可以理解为主函数)

3.9开始训练

3.10微调

4.测试模型

4.1加载训练好的模型

4.2测试数据预处理

4.3数据展示

4.4提取测试数据集

4.5计算提取数据集的预测结果

4.6展示预测结果

参考文献


1.迁移学习概念

先说一下深度学习常见的问题:

1.数据集不够,通常用数据增强解决。

2.参数难以确定,训练时间长,这就需要用迁移学习来解决

什么叫迁移学习呢:比方说有一个对100w的自行车数据集,并用VGG模型训练好的网络,而此时你想训练一个1w自行车数据集(虽然对象一样,但采集的数据会不同),也用VGG模型进行训练,你发现,你们数据集的对象一样,选用的网络模型一样,此时在初始化自己模型权重(就是卷积层,池化层和全连接层的参数)时,可以用人家训练好的模型参数(如果不这样就需要随机初始化模型权重),这样做可以节省大量寻找最优参数的时间,又可以保证参数的准确。

总结:迁移学习就是用别人的东西训练自己的东西,但要注意,为了使用别人的模型参数,要保证自己的数据对象、网络结构、输入和输出数据的结构和别人相同。比方说,别人识别狗,你不能识别 猫,别人用VGG你不能用resnet,别人输入和输入图像大小是224×224.你不能是256×256。

进一步理解迁移学习的使用1:看下图最大的红框,表示卷积层,当用别人的模型时,对卷积层的两种处理方式。

A:作为自己模型权重的初始化参数。

B:冻结卷积层网络,意思是直接用别人的参数,不再更新。冻结卷积层网络又分几种情况。

B1:当数据量小时,冻结第二大红框表示的卷积层,剩下卷积层进行更新。因为数据量小时,容易过拟合,直接用别人呢参数最好。

B2:当数据量中等时冻结最小红框表示的卷积层,剩下的卷积层进行更行。

B3:当数据量足够大时,不冻结卷积层,用A的方法,只作为自己模型权重的初始化参数。数据量大时,虽然对象一样,但毕竟数据不同,会有一定差异,更新参数是最优选择。

进一步理解迁移学习的使用2:说完卷积层,在说一下全连接层,必须要注意不管卷积层选A还是B,全连接层都是要更新的,原因在于,别人模型进行图像分类可能是进行1000个分类,而你只进行100或者999个分类,那么全连接层的参数肯定是不同的。

2.数据预处理

上接该文: pytorch实战-图像分类(一)(数据预处理)

3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

python 复制代码
model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True 

3.2如果用GPU训练,需要加入以下代码

python 复制代码
# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
    
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

3.3卷积层冻结模块

python 复制代码
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False

3.4加载resnet152模

注意:resnet152模型就是别人的模型。

python 复制代码
model_ft = models.resnet152()
model_ft

3.5解释initialize_model函数

本小节只是截取pytorch官网的一个例子,用initialize_model说明在pytoch中迁移学习怎么使用,不属于本文代码

具体操作如下:

1.下载别人的模型参数,这里下载restnet152模型

2.选择需要冻结的卷积层

3.改变全连接层的输出个数,这里将1000改为102

python 复制代码
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    # 选择合适的模型,不同模型的初始化方法稍微有点区别
    model_ft = None
    input_size = 0

    if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained) #下载resnet152模型
        set_parameter_requires_grad(model_ft, feature_extract) #选择冻结哪部分卷积层
        num_ftrs = model_ft.fc.in_features #全连接层的输入比方说全连接层是2048×1000,这就是2048.
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
                                   nn.LogSoftmax(dim=1)) #原resnet152的全连接层输出是1000,自己模型需要的输出是102,进行改动。
        input_size = 224
    return model_ft, input_size

3.6迁移学习网络搭建

python 复制代码
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

#GPU计算
model_ft = model_ft.to(device)

# 模型保存
filename='checkpoint.pth'

# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

3.7优化器

就是用该方法更新模型参数

python 复制代码
# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

3.8训练模块(可以理解为主函数)

python 复制代码
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):
    since = time.time() #
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    model.to(device)

    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]['lr']]

    best_model_wts = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()   # 验证

            running_loss = 0.0
            running_corrects = 0

            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4*loss2
                    else:#resnet执行的是这里
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)

                    _, preds = torch.max(outputs, 1)

                    # 训练阶段更新权重
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 计算损失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            
            
            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
            

            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                  'state_dict': model.state_dict(),
                  'best_acc': best_acc,
                  'optimizer' : optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

3.9开始训练

python 复制代码
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

3.10微调

在2.9中得到的模型,是冻结了卷积层,只训练了全连接层,所以此时希望在此基础上再对卷积层进行训练。

python 复制代码
for param in model_ft.parameters():
    param.requires_grad = True

# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 损失函数
criterion = nn.NLLLoss()

# Load the checkpoint,加载自己的模型

checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

4.测试模型

4.1加载训练好的模型

python 复制代码
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

# GPU模式
model_ft = model_ft.to(device)

# 保存文件的名字
filename='seriouscheckpoint.pth'

# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

4.2测试数据预处理

1.测试数据处理方法需要跟训练时一直才可以

2.crop操作的目的是保证输入的大小是一致的

3.标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化

4.PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换

python 复制代码
def process_image(image_path):
    # 读取测试数据
    img = Image.open(image_path)
    # Resize,thumbnail方法只能进行缩小,所以进行了判断
    if img.size[0] > img.size[1]:
        img.thumbnail((10000, 256))
    else:
        img.thumbnail((256, 10000))
    # Crop操作
    left_margin = (img.width-224)/2
    bottom_margin = (img.height-224)/2
    right_margin = left_margin + 224
    top_margin = bottom_margin + 224
    img = img.crop((left_margin, bottom_margin, right_margin,   
                      top_margin))
    # 相同的预处理方法
    img = np.array(img)/255
    mean = np.array([0.485, 0.456, 0.406]) #provided mean
    std = np.array([0.229, 0.224, 0.225]) #provided std
    img = (img - mean)/std
    
    # 注意颜色通道应该放在第一个位置
    img = img.transpose((2, 0, 1))
    
    return img

4.3数据展示

python 复制代码
def imshow(image, ax=None, title=None):
    """展示数据"""
    if ax is None:
        fig, ax = plt.subplots()
    
    # 颜色通道还原
    image = np.array(image).transpose((1, 2, 0))
    
    # 预处理还原
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = std * image + mean
    image = np.clip(image, 0, 1)
    
    ax.imshow(image)
    ax.set_title(title)
    
    return ax

4.4提取测试数据集

python 复制代码
# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()

model_ft.eval()

if train_on_gpu:
    output = model_ft(images.cuda())
else:
    output = model_ft(images)

4.5计算提取数据集的预测结果

python 复制代码
_, preds_tensor = torch.max(output, 1)

preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

4.6展示预测结果

python 复制代码
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    plt.imshow(im_convert(images[idx]))
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

参考文献

1.6-训练结果与模型保存_哔哩哔哩_bilibili

相关推荐
车载诊断技术29 分钟前
电子电气架构 --- 什么是EPS?
网络·人工智能·安全·架构·汽车·需求分析
KevinRay_34 分钟前
Python超能力:高级技巧让你的代码飞起来
网络·人工智能·python·lambda表达式·列表推导式·python高级技巧
跃跃欲试-迪之39 分钟前
animatediff 模型网盘分享
人工智能·stable diffusion
Captain823Jack1 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
被制作时长两年半的个人练习生1 小时前
【AscendC】ReduceSum中指定workLocal大小时如何计算
人工智能·算子开发·ascendc
Captain823Jack2 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
Black_mario2 小时前
链原生 Web3 AI 网络 Chainbase 推出 AVS 主网, 拓展 EigenLayer AVS 应用场景
网络·人工智能·web3
Aileen_0v02 小时前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
数信云 DCloud2 小时前
实力认可 | 通付盾入选《ISC.AI 2024创新能力全景图谱》五项领域
人工智能
itwangyang5202 小时前
AIDD - 从机器学习到深度学习:蛋白质-配体对接评分函数的进展
人工智能·深度学习·机器学习