yolov5中的best.pt是如何确定的

在yolov5 的使用过程中几乎都会发现的问题:

训练结果有last.ptbest.pt ,

last.pt好理解,就是最后一个epoch的输出,但是best是啥意思?怎么才算best?

我们来一行行看train.py源码

追溯到./utils/metrics.py中的fitness函数,可以看到是将mAP@0.5mAP@0.5:0.95按照1:9的比重确定最佳模型的

相关推荐
格林威10 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉
lxmyzzs10 小时前
【打怪升级 - 03】YOLO11/YOLO12/YOLOv10/YOLOv8 完全指南:从理论到代码实战,新手入门必看教程
人工智能·神经网络·yolo·目标检测·计算机视觉
格林威13 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现轮船检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·视觉检测
Coovally AI模型快速验证15 小时前
避开算力坑!无人机桥梁检测场景下YOLO模型选型指南
人工智能·深度学习·yolo·计算机视觉·目标跟踪·无人机
超龄超能程序猿19 小时前
图片查重从设计到实现(4)图片向量化存储-Milvus 单机版部署
人工智能·yolo·机器学习
格林威1 天前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现持械检测(C#代码,UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉
sanzk2 天前
yolo--qt可视化开发
yolo
停走的风2 天前
Yolo底层原理学习(V1~V3)(第一篇)
人工智能·深度学习·神经网络·学习·yolo
北京地铁1号线2 天前
YOLO12论文阅读:Attention-Centric Real-Time Object Detectors
论文阅读·yolo·目标检测
虚假程序设计3 天前
海康工业三相机联动串口触发系统:从 0 到 1 的踩坑笔记
数码相机·yolo·机器学习