数据可视化(六)多个子图及seaborn使用

1.多个子图绘制

python 复制代码
#绘制多个子图
#subplot(*args,**kwargs)  每个subplot函数只能绘制一个子图
#subplots(nrows,ncols)
#fig_add_subplot(行,列,区域)
#绘制子图第一种方式
plt.subplot(2,2,1)#第一个绘图区域两行两列
#plt.subplot(221)简写方式
plt.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
plt.subplot(2,2,2)#两行两列绘图区的第二个绘图区
plt.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)],'ro')
plt.subplot(2,1,2)#两行一列  ,第二行绘制
x=[1,2,3,4,5]
y=[random.randint(10,50) for i in range(5)]
plt.bar(x,y)
plt.show()
python 复制代码
#绘制的第二种方式
#两行三列的画图区域
#figure画布,axes坐标轴对象
figure,axes=plt.subplots(2,3)
plt.show()

figure,axes=plt.subplots(2,2)
axes[0,0].plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
axes[0,1].plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)],'ro')
x=[1,2,3,4,5]
y=[random.randint(10,50) for i in range(5)]
axes[1,0].bar(x,y)
x=[random.randint(10,50) for i in range(5)]
axes[1,1].pie(x,autopct='%1.1f%%')
plt.show()
python 复制代码
#绘制子图的第三种方式
#绘制画布
fig=plt.figure()
ax1=fig.add_subplot(2,2,1)  #两行两列第一个绘图区域
ax1.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
ax2=fig.add_subplot(2,2,2)  #两行两列第二个绘图区域
ax2.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)],'ro')
ax3=fig.add_subplot(2,2,3)
ax3.bar([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
ax4=fig.add_subplot(2,2,4)
ax4.pie([random.randint(1,10) for i in range(5)],autopct='%1.1f%%')
plt.show()
python 复制代码
#图表的保存
#图表保存格式jpeg,tiff,png
#plt.savefig(图名)

3.seaborn使用,首先安装。如果在pycharm中安装报错,先安装Scipy

python 复制代码
import matplotlib.pyplot as plt
import seaborn as sns
#seaborn绘图
#绘制简单柱状图
sns.set_style('darkgrid')#设置风格样式
x=[1,2,3,4,5]
y=[20,6,50,9,56]
sns.barplot(x,y)
plt.show()
相关推荐
狮智先生6 小时前
【编程实践】Windows + PySide6 + Matplotlib 绘图时 WinError 32 的完整排查与解决方案
windows·ui·个人开发·matplotlib·交通物流
studytosky1 天前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
不拱地的猪1 天前
Matplotlib 的字体参数设置方法(MAC OSX)
python·mac·matplotlib·字体设置·文中显示中文
乱世军军2 天前
matplotlib.pyplot 可视化显示的中文是框框(异常)
matplotlib
Pyeako2 天前
Python数据可视化--matplotlib库
python·matplotlib·数据可视化·画图·pylab
背心2块钱包邮5 天前
第9节——部分分式积分(Partial Fraction Decomposition)
人工智能·python·算法·机器学习·matplotlib
数据科学项目实践5 天前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:自定义函数
大数据·人工智能·python·机器学习·matplotlib·数据可视化
薛不痒8 天前
机器学习之python的matplotlib库和sklearn库
python·机器学习·matplotlib
wadesir10 天前
用Python实现ggplot2风格绘图(零基础入门Seaborn与Matplotlib美化技巧)
开发语言·python·matplotlib
背心2块钱包邮11 天前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib