R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

点击查看原文链接 https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247521349&idx=3&sn=80ab1c6aec0d0c715cb5cfac2da6b717&chksm=ce647eaef913f7b87bc045dc924d526590af9a7925ce30931d075e6f6ec5eea8eceed089efb9&scene=21#wechat_redirect

专题一:地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二:地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
大数据CLUB7 小时前
酒店预订数据分析及预测可视化
大数据·hadoop·分布式·数据挖掘·数据分析·spark·mapreduce
新知图书11 小时前
RDD的特点、算子与创建方法
数据分析·spark·1024程序员节
大数据魔法师16 小时前
分类与回归算法(三)- 逻辑回归
分类·回归·逻辑回归
一晌小贪欢21 小时前
【Html模板】电商运营可视化大屏模板 Excel存储 + 一键导出(已上线-可预览)
前端·数据分析·html·excel·数据看板·电商大屏·大屏看板
毕设源码-朱学姐1 天前
【开题答辩全过程】以 海水水质监测大数据分析为例,包含答辩的问题和答案
数据挖掘·数据分析
qq_254674411 天前
回归、分类、聚类
分类·回归·聚类
码界筑梦坊1 天前
240-基于Python的医疗疾病数据可视化分析系统
开发语言·python·信息可视化·数据分析·毕业设计·echarts
Altair澳汰尔1 天前
新闻速递丨Altair RapidMiner 数据分析和 AI 平台助力企业加速智能升级:扩展智能体 AI 及分析生态系统
人工智能·ai·数据分析·仿真·cae·rapidminer·数据自动化
图灵信徒1 天前
R语言绘图与可视化第六章总结
python·数据挖掘·数据分析·r语言
码界筑梦坊1 天前
243-基于Django与VUE的笔记本电脑数据可视化分析系统
vue.js·python·信息可视化·数据分析·django·毕业设计·echarts