R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

点击查看原文链接 https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247521349&idx=3&sn=80ab1c6aec0d0c715cb5cfac2da6b717&chksm=ce647eaef913f7b87bc045dc924d526590af9a7925ce30931d075e6f6ec5eea8eceed089efb9&scene=21#wechat_redirect

专题一:地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二:地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
慧都小妮子1 小时前
实时图形工具包GLG Toolkit:工业领域HMI数据可视化的优选产品
信息可视化·数据挖掘·数据分析
机器学习之心HML3 小时前
TCN-BiLSTM回归+特征贡献SHAP分析+新数据预测+多输出,MATLAB代码
matlab·数据挖掘·回归
IT·小灰灰3 小时前
AI成为精确的执行导演:Runway Gen-4.5如何用控制美学重塑社媒视频工业
大数据·图像处理·人工智能·python·数据分析·音视频
田里的水稻16 小时前
DT_digital_twin_ROS+Grazebo仿真
深度学习·数据挖掘·数据分析
我爱鸢尾花18 小时前
第十四章聚类方法理论及Python实现
大数据·python·机器学习·数据挖掘·数据分析·聚类
Tiger Z21 小时前
《R for Data Science (2e)》免费中文翻译 (第14章) --- Strings(2)
数据分析·r语言·数据科学·免费书籍
每天学点21 小时前
R语言 使用bibliometrix包进行文献计量学
r语言·文献计量
非著名架构师1 天前
“低空经济”的隐形护航者:AI驱动的秒级风场探测如何保障无人机物流与城市空管安全?
人工智能·数据分析·疾风气象大模型·高精度天气预报数据·galeweather.cn·高精度气象
洁洁!1 天前
openEuler在WSL2中的GPU加速AI训练实战指南
人工智能·数据挖掘·数据分析
非著名架构师1 天前
从“人找信息”到“信息找人”:气象服务模型如何主动推送风险,守护全域安全?
大数据·人工智能·安全·数据分析·高精度天气预报数据·galeweather.cn