R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

点击查看原文链接 https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247521349&idx=3&sn=80ab1c6aec0d0c715cb5cfac2da6b717&chksm=ce647eaef913f7b87bc045dc924d526590af9a7925ce30931d075e6f6ec5eea8eceed089efb9&scene=21#wechat_redirect

专题一:地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二:地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
智航GIS1 小时前
11.13 Pandas进阶:掌握多级分组与高级聚合,解锁数据分析新维度
数据挖掘·数据分析·pandas
YangYang9YangYan2 小时前
2026高职大数据与会计专业学数据分析的价值分析
大数据·数据挖掘·数据分析
UR的出不克2 小时前
Python实现SMZDM数据处理系统:从爬虫到数据分析的完整实践
爬虫·python·数据分析
瑞华丽PLM2 小时前
工业大数据背景下的PLM数据分析:驱动产品创新新范式
大数据·数据挖掘·数据分析·plm·国产plm·瑞华丽plm·瑞华丽
大闲在人3 小时前
22. EOQ 扩展模型:有限生产率场景下的库存优化
数据分析·供应链管理·智能制造·库存管理·工业工程
YangYang9YangYan4 小时前
2026大专财务专业学数据分析的价值分析
数据挖掘·数据分析
英英_4 小时前
如何在MATLAB中进行数据可视化
matlab·信息可视化·数据分析
努力的小白o(^▽^)o5 小时前
回归实战(小白版本)
人工智能·数据挖掘·回归
wang_yb21 小时前
打破堆积困局:优化堆积条形图的对比效果
数据分析·databook
实战项目1 天前
大数据分析XX未来五年的房价走势
数据挖掘·数据分析