R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

点击查看原文链接 https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247521349&idx=3&sn=80ab1c6aec0d0c715cb5cfac2da6b717&chksm=ce647eaef913f7b87bc045dc924d526590af9a7925ce30931d075e6f6ec5eea8eceed089efb9&scene=21#wechat_redirect

专题一:地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二:地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
SeaTunnel31 分钟前
(二)从分层架构到数据湖仓架构:数据仓库分层下的技术架构与举例
大数据·数据仓库·数据分析·数据同步
B站_计算机毕业设计之家1 小时前
预测算法:股票数据分析预测系统 股票预测 股价预测 Arima预测算法(时间序列预测算法) Flask 框架 大数据(源码)✅
python·算法·机器学习·数据分析·flask·股票·预测
qq_436962185 小时前
奥威BI:AI数据分析赋能企业智能决策
人工智能·数据挖掘·数据分析
兮兮能吃能睡8 小时前
数据分析核心术语略解
数据挖掘·数据分析
污斑兔11 小时前
技术随笔:Node.js ESM 中巧用 `-r dotenv/config` 解决环境变量异步加载问题
开发语言·r语言·node.js
青云交12 小时前
Java 大视界 -- Java 大数据在智能建筑能耗监测与节能策略制定中的应用
数据分析·数据存储·数据可视化·1024程序员节·能耗监测·java 大数据·智能建筑
B站_计算机毕业设计之家13 小时前
计算机视觉:python车牌识别检测系统 YOLOv8 深度学习pytorch技术 LPRNet车牌识别算法 CCPD2020数据集 ✅
大数据·python·深度学习·机器学习·计算机视觉·数据分析·车牌识别
SteveRocket19 小时前
Python机器学习与数据分析教程之pandas
python·机器学习·数据分析
YangYang9YangYan1 天前
大专计算机技术专业就业方向:解读、规划与提升指南
大数据·人工智能·数据分析
B站_计算机毕业设计之家1 天前
spark实战:python股票数据分析可视化系统 Flask框架 金融数据分析 Echarts可视化 大数据技术 ✅
大数据·爬虫·python·金融·数据分析·spark·股票