R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

点击查看原文链接 https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247521349&idx=3&sn=80ab1c6aec0d0c715cb5cfac2da6b717&chksm=ce647eaef913f7b87bc045dc924d526590af9a7925ce30931d075e6f6ec5eea8eceed089efb9&scene=21#wechat_redirect

专题一:地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二:地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
babe小鑫42 分钟前
企业客户数据分级防护发展指南
大数据·信息可视化·数据分析
啊辉的科研1 小时前
植物单细胞RNA-seq分析教程3-2025年版
linux·r语言
Lun3866buzha1 小时前
人员跌倒检测系统:基于Faster R-CNN的改进模型实现与优化_1
开发语言·r语言·cnn
Zachery Pole4 小时前
根据高等代数与数分三计算线性回归中的w
算法·回归·线性回归
追风少年ii6 小时前
多组学顶刊--肿瘤源性氨可被调节性T细胞代谢利用,进而强化对机体抗肿瘤免疫反应的抑制效应
python·分类·数据分析·空间·单细胞
啊辉的科研7 小时前
植物单细胞RNA-seq分析教程4-2025年版
数据分析·r语言
-To be number.wan7 小时前
Python数据分析:pyecharts可视化
python·信息可视化·数据分析
量子-Alex7 小时前
【大模型智能体】人工智能宇宙学家 I:自动数据分析的智能体系统
人工智能·数据挖掘·数据分析
电商API_180079052478 小时前
电商评论数据爬虫:情感分析与数据可视化实战
大数据·人工智能·爬虫·信息可视化·数据分析
北极九章ArcticData9 小时前
医药行业ChatBI的建设思路和实践案例
大数据·数据分析·chatbi