R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

点击查看原文链接 https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247521349&idx=3&sn=80ab1c6aec0d0c715cb5cfac2da6b717&chksm=ce647eaef913f7b87bc045dc924d526590af9a7925ce30931d075e6f6ec5eea8eceed089efb9&scene=21#wechat_redirect

专题一:地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二:地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
木木子999913 分钟前
不同行业视角下的数据分析
数据挖掘·数据分析
没有梦想的咸鱼185-1037-166322 分钟前
基于R语言机器学习方法在生态经济学领域中的实践技术应用
开发语言·机器学习·数据分析·r语言
Webb Yu38 分钟前
Azure Databricks 实践:数据分析、机器学习、ETL 与 Delta Lake
机器学习·数据分析·azure
zhangfeng11332 小时前
R 语法高亮为什么没有,是需要安装专用的编辑软件,R语言自带的R-gui 功能还是比较简单
开发语言·r语言
WangYan20222 小时前
经济学+机器学习+R语言:十大原理、熵权法、随机森林、神经网络、因果推断全解析
r语言·生态经济学·经济学
亚马逊云开发者3 小时前
基于 Amazon Q Developer+Remote MCP 访问 Amazon Redshift
数据分析
高-老师12 小时前
基于R语言的物种气候生态位动态量化与分布特征模拟
开发语言·r语言·物种气候
Tiger Z12 小时前
R 语言科研绘图 --- 其他绘图-汇总2
r语言·论文·科研·绘图·研究生
非门由也14 小时前
《sklearn机器学习——管道和复合估计器》回归中转换目标
机器学习·回归·sklearn
WangYan202215 小时前
【物种分布模型】R语言物种气候生态位动态量化与分布特征模拟——气候生态位动态检验、质心转移可视化、适生区预测等
r语言·物种分布模型·物种气候生态位